
PHYSICAL REVIEW APPLIED 22, 024029 (2024)

Symmetry-based quantum circuit mapping

Di Yu 1,† and Kun Fang 2,*,†

1
Department of Electrical and Electronic Engineering, The University of Hong Kong, 999077 Hong Kong, China

2
School of Data Science, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172 Guangdong, China

 (Received 6 November 2023; revised 22 April 2024; accepted 23 July 2024; published 9 August 2024)

Quantum circuit mapping is a crucial process in the quantum circuit compilation pipeline, facilitating
the transformation of a logical quantum circuit into a list of instructions directly executable on a tar-
get quantum system. Recent research has introduced a postcompilation step known as remapping, which
seeks to reconfigure the initial circuit mapping to mitigate quantum circuit errors arising from system
variability. As quantum processors continue to scale in size, the efficiency of quantum circuit mapping
and the overall compilation process has become of paramount importance. In this work, we introduce a
quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors, mak-
ing it well suited for large-scale quantum systems. This algorithm identifies all topologically equivalent
circuit mappings by constraining the search space using symmetries and accelerates the scoring of each
mapping using vector computation. Notably, this symmetry-based-circuit-remapping algorithm exhibits
linear scaling with the number of qubits in the target quantum hardware and is proven to be optimal in
terms of its time complexity. Moreover, we conduct a comparative analysis against existing methods in
the literature, demonstrating the superior performance of our symmetry-based method on state-of-the-art
quantum hardware architectures and highlighting the practical utility of our algorithm, particularly for
large-scale quantum computing.

DOI: 10.1103/PhysRevApplied.22.024029

I. INTRODUCTION

Quantum computing has emerged as a promising avenue
for solving intractable problems that are beyond the reach
of classical computing, such as integer factoring [1], large
database search [2], chemistry simulation [3], and machine
learning [4]. To put the theoretically blueprinted quan-
tum advantages into use, it is essential to execute them on
real-world quantum computers, moving beyond theoretical
concepts and simulation environments. However, quan-
tum algorithms are typically designed at the logical level,
assuming ideal qubits and the ability to apply a univer-
sal set of quantum gates. These algorithms are not directly
executable on quantum hardware devices, which comprise
qubits with limited coherence time and support only a spe-
cific set of native operations. This disparity underscores the
necessity of quantum circuit compilation, which translates
high-level quantum algorithms into low-level quantum
instructions compatible with the target systems.

Quantum circuit compilation involves various tasks,
including gate decomposition into the native operations
of the quantum device, adaptation of operations to the
hardware’s topology, and optimization to reduce circuit

*Contact author: kunfang00@outlook.com
†D.Y. and K.F. contributed equally to this work.

depth. Of particular importance is quantum circuit map-
ping, which aligns the quantum circuit with the hard-
ware architecture, ensuring that any two-qubit operation
is applied to physically connected qubits on the device.
This alignment is often achieved through the insertion of
SWAP operations, allowing one to interchange the position
of two logical qubits on the architecture. Chaining such
operations permits arbitrary routing among remote qubits.
To guarantee the reliable execution of the resulting cir-
cuit, it is imperative to minimize the overhead of SWAP
operations. Previous research on the circuit-mapping prob-
lem predominantly focused on gate-optimal solutions, with
the aim of minimizing the number of inserted SWAP gates
[5–10]. Other research has concentrated on time-optimal
circuit mapping, which seeks to minimize the depth of the
entire transformed circuit [11–13].

SWAP gates align quantum circuits with topologies of
target quantum hardware but introduce errors. The MAPO-
MATIC algorithm, introduced in Ref. [14], addresses
this by reconfiguring initial circuit mappings to increase
fidelity. While effective in mitigating errors, it requires the
solving of a nondeterministic-polynomial-time-complete
subgraph-matching problem [15]. MAPOMATIC uses
standard routines such as VF2 and VF2++ to solve this
subgraph-matching problem [16,17], but their polynomial-
time complexity may pose scalability issues as quantum

2331-7019/24/22(2)/024029(11) 024029-1 © 2024 American Physical Society

https://orcid.org/0009-0001-0750-2017
https://orcid.org/0000-0002-9232-6846
https://ror.org/02zhqgq86
https://ror.org/02d5ks197
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.22.024029&domain=pdf&date_stamp=2024-08-09
http://dx.doi.org/10.1103/PhysRevApplied.22.024029

DI YU and KUN FANG PHYS. REV. APPLIED 22, 024029 (2024)

hardware advances [18,19]. With current quantum com-
puters reaching hundreds of qubits [20] and projections
of millions in the future [21], existing remapping algo-
rithms may struggle even with small circuits on near-term
processors.

Symmetries play a pivotal role in various applications
within the field of quantum information science, including
designing quantum machine-learning algorithms [22,23],
evaluating quantum channel capacities [24–26], analyz-
ing quantum entropies [27,28], and quantifying all kinds
of quantum resources for quantum computation and quan-
tum communication [29–38]. Nevertheless, the potential
of harnessing hardware symmetries for quantum circuit
compilation remains largely unexplored.

In this work, we address the scalability challenge of
quantum circuit remapping by leveraging the inherent
symmetries present in scalable quantum architectures. The
main idea of this work is illustrated in Fig. 1. We con-
sider a two-step workflow of quantum circuit compilation
consisting of precompilation and remapping processes. In
the precompilation phase, we determine an initial circuit

mapping of the input quantum circuit [Fig. 1(a)]. This
process generates a precompiled circuit [Fig. 1(b)] that
implements the same unitary operation as the input circuit.
The precompiled circuit has a logic qubit connectivity, i.e.,
interaction graph [Fig. 1(c)], that aligns with the physical
connectivity of the target quantum processor [Fig. 1(d)].
Subsequently, during the remapping process, we iden-
tify all isomorphic subgraphs of the initial mapping and
score the induced mappings using hardware calibration
data. In particular, we introduce an algorithm that sig-
nificantly reduces the search space for all topologically
equivalent circuit mappings by leveraging hardware sym-
metries and that efficiently identifies the optimal circuit
mapping through a vectorized scoring method. Notably,
this symmetry-based-circuit-remapping algorithm exhibits
linear scaling with the number of qubits in the target
hardware and is proved to be optimal in terms of its
time complexity. Moreover, we benchmark the runtime of
our algorithm with three typical quantum processors of
grid, octagonal, heavy-hex structures, respectively, demon-
strating the superior efficiency of our algorithm over the

FIG. 1. Illustration of quantum circuit compilation with mapping and remapping processes. (a) The input quantum circuit. (b) The
precompiled quantum circuit, assuming {U3, controlled X , SWAP} as the set of native operations in this example. (c) The interaction
graph of the precompiled circuit. (d) A coupling graph with the heavy-hex structure. The mapping process finds a mapping from logical
qubits in the interaction graph to physical qubits in the coupling graph. The remapping process finds a mapping from physical qubits
to physical qubits such that the composed mapping-and-remapping process reduces the error of circuit implementation. The search for
all isomorphic subgraphs used in the remapping process can be confined to the reduced search space, which is a neighborhood of the
generating set, as depicted within the red area.

024029-2

SYMMETRY-BASED QUANTUM CIRCUIT MAPPING PHYS. REV. APPLIED 22, 024029 (2024)

existing method in practical scenarios. To the best of
our knowledge, this study marks the first instance of the
utilization of the topological symmetries of quantum pro-
cessors to address quantum circuit compilation challenges,
potentially offering insights into other compilation pro-
cesses. Moreover, our technical contribution is a purely
mathematical result and holds promise for application in
various other problem domains.

The remainder of this paper is structured as follows: In
Sec. II we introduce the preliminaries to be used through-
out this work. In Sec. III we present the symmetry-based-
subgraph-matching (SBSM) algorithm and its underlying
theorem, justifying the search for all topologically equiv-
alent circuit mappings within a reduced search space. We
also outline the vectorized scoring method that expedites
the mapping process in practice. In Sec. IV we provide
a comparative analysis of our algorithm against existing
methods. Finally, Sec. V concludes the paper, and we
propose potential directions for future research.

II. PRELIMINARIES

A. Notation

A graph is defined as an ordered pair of the vertex set
and the edge set, denoted as G = (V, E), where V [or V(G)]
denotes the set of vertices and where E [or E(G)] repre-
sents the set of edges. Each edge is an unordered pair of
vertices e = {u, v} for some u, v ∈ V. The order of a graph
is its number of vertices |V|. A graph G′ is a subgraph of G,
denoted as G′ ⊆ G, if V(G′) ⊆ V(G) and E(G′) ⊆ E(G).
An induced subgraph of a graph is another graph, formed
from a subset of the vertices of the graph and all of the
edges (from the original graph) connecting pairs of ver-
tices in that subset. The degree of a vertex of a graph is the
number of edges that are connected to the vertex. A graph
has a bounded degree if the maximum degree of any ver-
tex in the graph is limited by a constant value that remains
independent of the graph’s order. A walk is a sequence
of edges (e1, e2, . . . , en) for which there is a sequence
of vertices (v1, v2, . . . , vn+1) such that ek = {vk, vk+1} for
k ∈ {1, 2, . . . , n}. A path is a walk in which all edges and
all vertices are distinct, and the length of the path is defined
as the number of edges it contains. Two vertices u and v are
connected if there exists a path from vertex u to vertex v

in graph G. Two vertices are adjacent if they are connected
by a path of length 1, i.e., by a single edge. A graph is con-
nected if every pair of vertices in the graph is connected.
The kth-order neighborhood of a vertex v in a graph G,
denoted as N k

G(v), refers to the set of vertices that can be
reached from v within k hops. In other words, u ∈ N k

G(v)

if and only if u = v or there exists a path connecting u and
v with a length no greater than k. The kth-order neighbor-
hood of a subset S, denoted as N k

G(S), is defined as the
union of the kth-order neighborhoods of all vertices within
the subset S.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2),
these graphs are isomorphic, denoted as G1 ∼= G2, if there
exists a bijection between the vertex sets f : V1 → V2 such
that {u, v} ∈ E1 if and only if {f (u), f (v)} ∈ E2. This bijec-
tion f is referred to as an isomorphism from G1 to G2.
In particular, an automorphism is an isomorphism from
a graph to itself. Note that f is a mapping from vertices
to vertices, but we can naturally extend it to a map-
ping that operates on both vertices and edges: f̃ : V1 ∪
E1 → V2 ∪ E2, defined by f̃ (v) = f (v) and f̃ ({u, v}) =
{f (u), f (v)}. Therefore, f̃ can be taken as a mapping
from graph to graph and is referred to as a natural exten-
sion of f . In this work, we address the subgraph-matching
problem, which involves finding all subgraphs in a target
graph that are isomorphic to a given pattern graph. This
problem is nondeterministic polynomial time complete in
general [15,39].

B. Symmetry of graph

In general, the symmetry of an object is associated with
a transformation that preserves certain structural aspects of
it. In graph theory, the automorphisms of a graph play the
role of symmetry transformations. We denote the set of all
automorphisms of a graph G as Sym(G). This set forms a
group under the composition of operators, which we refer
to as the symmetry group of G. Let H be a subgroup of
Sym(G). For a fixed vertex x in G, the orbit of x under
H is defined as orbH (x) = {y ∈ V(G) : y = gx for some
g ∈ H}. In particular, we refer to the orbit of x with respect
to a symmetry group H = {f i : i ∈ Z} as the orbit of x
with respect to automorphism f , denoted as orbf (x). It is
easy to show that all orbits within G form a partition of the
vertices, and two vertices u and v in V(G) belong to the
same orbit if and only if there exists an automorphism f of
graph G such that f (u) = v. The orbit of a set of vertices
V0 ⊆ V(G), denoted as orbf (V0), is defined by the union of
the orbits orbf (x) for all x ∈ V0. A generating set of a graph
G = (V, E) with respect to the automorphism f is a subset
of vertices V0 ⊆ V such that the orbit of V0 with respect to
f covers all the vertices in G, i.e., orbf (V0) = V. Or equiva-
lently, a subset of vertices V0 ⊆ V is called a generating set
of a graph G = (V, E) with respect to an automorphism f if
{f i(v)|i ∈ Z, v ∈ V0} = V. Similarly, the generating set of
G under a group of automorphisms F is a subset of vertices
V′

0 ⊆ V such that orbF(V′
0) = V. For an infinite square-grid

graph Ggrid, for instance, this graph has two independent
automorphisms—one automorphism fx maps each node to
the right nearest node, while the other one fy maps each
node to the upper nearest node. These two automorphisms
are commuting with each other and generate a group of
automorphisms Fgrid = {f i

x f j
y |i, j ∈ Z}. Each single vertex

set {v} with v ∈ V(Ggrid) constitutes a generating set of
Ggrid with respect to Fgrid.

024029-3

DI YU and KUN FANG PHYS. REV. APPLIED 22, 024029 (2024)

C. Graph distance

The distance between two vertices v and u within a
graph, denoted as d(v, u), corresponds to the shortest path
connecting them, measured in terms of the number of
edges. In cases where no such path exists, the distance is
conventionally regarded as infinite. The eccentricity ε(v)

for a given vertex v within a graph G = (V, E) is defined
as the greatest distance between vertex v and any other
vertex, i.e., ε(v) = maxu∈V d(v, u). This value tells how
distant a node is from the farthest node in the entire graph.
The radius of a graph G = (V, E), denoted as r(G), rep-
resents the minimum eccentricity among all vertices, i.e.,
r(G) = minv∈V ε(v). Then the minimizer is called a central
vertex of the graph.

D. Quantum circuit mapping

The interaction graph of a quantum circuit serves as a
representation of the qubits and the required interactions
between them. Each node in the interaction graph corre-
sponds to a logical qubit in the quantum circuit, and an
edge connects two qubits if there is a two-qubit gate in
the circuit acting on both of those qubits. However, exist-
ing quantum computers typically provide a native gate
set that includes a family of single-qubit gates along with
some two-qubit gates. The interactions between qubits in
a quantum processor are also constrained by the connec-
tivity of its architecture, which can be expressed through
the coupling graph, denoted as G = (V, E). In this graph, V
represents the set of physical qubits, and an edge {u, v} ∈ E
signifies that a two-qubit gate can be directly executed
between physical qubits u and v.

To execute a quantum circuit on a target quantum
device, the set of logical qubits, denoted as Ql, in the
interaction graph of the circuit must first be mapped to
the physical qubits, represented as Qp , according to the
coupling graph of the quantum processor. This mapping
involves establishing an injective function g : Ql → Qp ,
meaning that each logical qubit is uniquely assigned to
a specific physical qubit. The purpose of circuit mapping
is to ensure that the two-qubit gates in the circuit can be
executed with use of the available physical qubits in accor-
dance with the constraints defined by the coupling graph
of the quantum device. In graph theory, this is the same as
finding a subgraph of the coupling graph that is isomorphic
to the interaction graph of the circuit.

Quantum circuit remapping is introduced as a subse-
quent step that follows circuit mapping and entails the
mapping of h : Qp → Qp . Therefore, the combined effect
of the circuit mapping and remapping, denoted as h ◦ g,
is a mapping from logical qubits to physical qubits. This
mapping aims to reduce errors during the implementation
of the quantum circuit. The most-crucial step in the remap-
ping process is to identify all subgraphs in the coupling

graph that are isomorphic to the interaction graph of the
circuit, essentially solving a subgraph-matching problem.

III. SYMMETRY-BASED QUANTUM CIRCUIT
MAPPING

In this section, we introduce a subgraph-matching
algorithm that leverages the topological symmetry of quan-
tum processors. We also present a circuit-mapping-scoring
algorithm that uses vector computation. These routines are
then integrated into a compilation pipeline, forming a com-
plete quantum circuit mapping algorithm. We then provide
a complexity analysis of our algorithm, highlighting its
optimality with respect to time complexity.

A. Symmetry-based subgraph matching

The idea behind our subgraph-matching algorithm, as
depicted in Fig. 1, is to narrow down the search space
for isomorphic graphs by focusing on a neighborhood of
the generating set within the target graph. This approach
is supported by Theorem 1, which indicates that all iso-
morphic graphs can be obtained by one applying the cor-
responding symmetry transformations to certain subgraphs
within the reduced space.

Theorem 1. Let T be a graph and S be a generating
set of T with respect to the automorphism f . Let G be a
subgraph of T with radius r. Then for any subgraph G′′
of T that is isomorphic to G, there exists an integer n
and subgraph G′ ⊆ T such that G′′ = f̃ n(G′), with G′ ∼= G,
V(G′) ⊆ N r

T(S), and f̃ being the natural extension of f .

Here N r
T(S) is the rth-order neighborhood of the generat-

ing set S within the graph T, f is a mapping from vertex to
vertex, and f̃ is a mapping from vertex (or edge) to vertex
(or edge). The proof of this result requires the following
lemmas.

Lemma 1. Let T be a graph with an automorphism f .
Let u and v be two vertices in T. Then there exists a path
connecting u and v of length l if and only if f n(u) and f n(v)

are connected by a path of length l for any integer n.

Proof. Suppose that (w0, w1, . . . , wl) is a path connect-
ing vertices w0 = u and wl = v. Then {wk, wk+1} is an edge
in graph T for any k ∈ {0, . . . , l − 1}. Since f is an auto-
morphism, we know that {f (wk), f (wk+1)} is also an edge
in T. This implies that (f (w0), f (w1), . . . , f (wl)) is a path
in T, which connects f (u) and f (v) and has a length of l.
By repeating this process, we can demonstrate that for all
positive integers n, f n(u) and f n(v) are connected by a
path of length l. Furthermore, since f −1 is also an auto-
morphism of T, we can extend the range of n to all integers
and conclude the proof. �

024029-4

SYMMETRY-BASED QUANTUM CIRCUIT MAPPING PHYS. REV. APPLIED 22, 024029 (2024)

The next lemma suggests that the operation of tak-
ing a neighborhood of a vertex set commutes with an
automorphism.

Lemma 2. Let T be a graph with an automorphism f ,
and let S ⊆ V(T) be a subset of vertices. Then for any
integer n and positive integer m, N m

T (f n(S)) = f n(N m
T (S)).

Proof. For any x ∈ N m
T (f n(S)), there exists y ∈ f n(S)

such that x and y are connected by a path of length l
in T with l ≤ m. Since y ∈ f n(S), there exists z ∈ S such
that y = f n(z). By Lemma 1, we know that there exists
a path of length l connecting f −n(x) and f −n(y). Note
that f −n(y) = f −n(f n(z)) = z ∈ S. This implies f −n(x) ∈
N m

T (S). Hence, there exists s in N m
T (S) such that f −n(x) =

s, or equivalently x = f n(s). This gives x ∈ f n(N m
T (S))

and concludes that N m
T (f n(S)) ⊆ f n(N m

T (S)). Now we
prove the other direction. Consider any x ∈ f n(N m

T (S)).
There exists s in N m

T (S) such that x = f n(s). Since s is in
N m

T (S), we know that there exists y in S and a path of length
l connecting s and y with l ≤ m. By Lemma 1, we know
that there exists a path of length l connecting x = f n(s) and
f n(y) ∈ f n(S). This implies x ∈ N m

T (f n(S)) and concludes
that f n(N m

T (S)) ⊆ N m
T (f n(S)). �

We are now ready to prove the main theorem.

Proof of Theorem 1. Since G′′ is isomorphic to G, they
have the same radius r. Let v be a central vertex of V(G′′).
By the definition of central vertices, all vertices of G′′
must be reachable from v within r hops. That is, G′′ is
contained by the rth-order neighborhood of v, namely,
V(G′′) ⊆ N r

T(v). According to the definition of generat-
ing set, there exists an integer n such that v ∈ f n(S).
Since v ∈ f n(S) and V(G′′) ⊆ N r

T(v), we then get V(G′′) ⊆
N r

T(f
n(S)). By Lemma 2, we have N r

T(f
n(S)) = f n(N r

T(S)).
This gives V(G′′) ⊆ f n(N r

T(S)). Now let us choose G′ =
f̃ −n(G′′). We have V(G′) = V(f̃ −n(G′′)) = f −n(V(G′′)) ⊆
f −n(f n(N r

T(S))) = N r
T(S), where the second equality fol-

lows by the definition of the natural extension of an auto-
morphism. Since f̃ maps graphs to isomorphic graphs, we
have G′ = f̃ −n(G′′) ∼= G′′. Note that G′′ ∼= G, and we get
G′ ∼= G. This concludes the proof. �

The automorphism in Theorem 1 can be replaced with
a group of automorphisms. This result is formally pre-
sented in Corollary 1 and applies to various practical
scenarios where a graph has multiple independent sym-
metry transformations. For example, a two-dimensional
grid possesses two independent symmetry transformations:
translation in both the horizontal direction and the vertical
direction.

Corollary 1. Let T be a graph and S be a generating set
of T with respect to a group of automorphisms F . Let G be

ALGORITHM 1. Symmetry-based subgraph matching

a subgraph of T with radius r. Then for any subgraph G′′ of
T that is isomorphic to G, there exists an automorphisms
f ∈ F and subgraph G′ ⊆ T such that G′′ = f̃ (G′), with
G′ ∼= G, V(G′) ⊆ N r

T(S), and f̃ being the natural extension
of f .

Theorem 1 and Corollary 1 indicate that to locate all
the subgraphs in T that are isomorphic to G, one needs to
search over only the subgraph induced by the vertex set
N r

T(S). In light of this reduction, we propose the SBSM
algorithm (Algorithm 1), enabling efficient searching for
all circuit mappings given a coupling graph.

The SBSM algorithm consists of three major steps. First,
the algorithm identifies a reduced search space for initial
subgraph matching. To this end, the algorithm calculates
the radius of G, denoted as r, and computes the rth-order
neighborhood of G, serving as the reduced search space.
Second, it uses a standard subgraph-matching algorithm,
such as VF2 [16], to search for isomorphic graphs within
the reduced search space. Lastly, the searched-for patterns
are transformed with use of the symmetry transformations
to get all the isomorphisms.

As an explicit example, Algorithm 1 can be illustrated
by one considering the problem of finding all subgraph
isomorphisms of the interaction graph G [Fig. 1(c)] in the
hardware coupling graph T [Fig. 1(d)]. In graph G, nodes
0 and 4 are central vertices, each with an eccentricity of
2, indicating that the radius of G is 2. The solid red points
in Fig. 1(d) represent a generating set S of the hardware
coupling graph, and the subset of vertices enclosed by the
dashed red line represents its neighborhood N 2

T (S). The
subgraph of T induced by the vertices in N 2

T (S), denoted
by R, serves as the reduced space for the SBSM algorithm.
The algorithm searches for isomorphisms of G within R.
According to Corollary 1, all subgraph isomorphisms of
G in T are related to those found in R through an auto-
morphism of the coupling graph T. Traversing through the

024029-5

DI YU and KUN FANG PHYS. REV. APPLIED 22, 024029 (2024)

automorphisms via a for-loop gives all the isomorphisms
we need.

Note that the coupling graph of a quantum processor
may not inherently possess symmetries, particularly along
its boundary. Nevertheless, we can effectively apply the
SBSM algorithm by embedding the coupling graph within
a larger graph that does possess symmetries. It is also
worth mentioning that the SBSM algorithm can accom-
modate various types of symmetry, which may include,
but are not limited to, translational, mirror, and rotational
symmetries. For the numerical experiments discussed in
the following sections, we primarily focus on translational
symmetries for simplicity.

B. Circuit-mapping scoring through vectorization

Quantum circuit remapping involves the assessment of
all topologically equivalent circuit mappings. The existing
approach in QISKIT accomplishes this by using a for-loop
to estimate the overall circuit fidelity for each mapping
one by one [40]. However, the for-loop implementation
is time consuming, particularly when one is dealing with
a large number of mappings. To mitigate the computa-
tional cost of scoring these mappings, we use the technique
of vectorization, which transforms the evaluation process
into vector computations. As we demonstrate later, the
use of vectorization substantially speeds up the circuit-
evaluation process, which would otherwise be dominant in
the runtime of our remapping algorithm.

Our circuit-mapping-scoring algorithm is presented in
Algorithm 2, where we emphasize the vectors in bold
symbols. In this algorithm, we denote the array of cir-
cuit mappings and the error map by L and E, respectively.
Specifically, L is a mapping from a logical gate to an array
of physical gates. E is a function that takes these physical
gates as input and returns their error rates. The initial phase
of the circuit-mapping-scoring process involves the trans-
formation of the precompiled circuit into a sequence of
individual logical gates, represented as G. For each logical

ALGORITHM 2. Circuit-mapping scoring through
vectorization

gate g within G, we access the error-rate vector of the cor-
responding physical gates from the hardware calibration
data, E′ = E(L(g)). Note that E′ encapsulates the error
rates associated with the specific gate G′ across all circuit
mappings. Subsequently, by harnessing the elementwise
vector multiplication supported by the NumPy library [41],
we perform vector computations to evaluate the circuit-
scoring vector S, recording the estimated fidelity values
of all circuit mappings. That is, we perform elementwise
multiplication, denoted by
, iteratively on 1 − E′ for all
g, where 1 is the vector of 1’s. The resulting S is used to
guide the selection of the optimal mapping that maximizes
the overall circuit fidelity.

Consider an example where the input logical quantum
circuit C consists of only two gates: a single-qubit gate
g1 and a two-qubit gate g2. Algorithm 2 begins by deter-
mining the indices of the physical gates that correspond
to g1, which are denoted as L′

1 = L(g1), on the basis of
the circuit mappings provided . It then retrieves the error
rates of these physical gates and stores them in a NumPy
array E′

1 = E(L′
1). Next, the algorithm applies the same

process to g2, obtaining a NumPy array E′
2 that contains the

error rates of the corresponding two-qubit physical gates.
Finally, to estimate the circuit fidelity, the algorithm cal-
culates the elementwise product of (1 − E′

1) and (1 − E′
2),

where 1 represents a NumPy array of 1’s with the same
shape as E′

1 and E′
2, respectively. The resulting product

serves as an estimate of the circuit fidelity and is returned
as the output of the algorithm.

C. Symmetry-based quantum circuit mapping

The SBSM algorithm and the circuit-mapping-scoring
algorithm can work together to facilitate efficient quan-
tum circuit remapping. Now we integrate these steps
into a complete quantum circuit mapping algorithm, as
presented in Algorithm 3. This symmetry-based-circuit-
mapping (SBCM) algorithm comprises several main steps.
First, the algorithm uses existing methods, such as those
supported by QISKIT, to compile the quantum circuit, giv-
ing the interaction graph G and an initial circuit map-
ping Lpre. Note that this precompilation should be chosen
as independent of the order of T. Second, the SBSM
algorithm is used to search for isomorphic subgraphs of
G within the hardware coupling graph T. These discov-
ered subgraphs are recorded in the vector L. Note that each
isomorphic subgraph is associated with a circuit mapping
from the precompiled circuit onto the given quantum hard-
ware. Third, the algorithm uses vectorized computation,
as stated in Algorithm 2, to score all circuit mappings.
Finally, the circuit mappings are sorted on the basis of
their scores (the estimated circuit fidelity), and the cir-
cuit mapping that maximizes the scores is selected and
returned.

024029-6

SYMMETRY-BASED QUANTUM CIRCUIT MAPPING PHYS. REV. APPLIED 22, 024029 (2024)

ALGORITHM 3. Symmetry-based circuit mapping

D. Computational complexity

We conduct a computational-complexity analysis for
our symmetry-based algorithms, with a particular focus
on scalable quantum processors that feature sparse cou-
pling graphs with bounded degrees. That is, the maximum
degree of any vertex in the graph is constrained by a con-
stant value that remains independent of the graph’s order.
This ensures that the size of the reduced search space
remains constant. We are aware that this constraint may
not hold for trapped-ion quantum systems whose coupling
graph is complete. Nevertheless, such systems inherently
exhibit scalability issues, and we believe that the bounded-
degree assumption is reasonable for all scalable quantum
processors, especially in the context of superconducting
quantum systems. Our complexity analysis focuses on the
scaling of the coupling graph, while we consider the size
of the circuit to be compiled as fixed.

The following result shows that the SBSM algorithm
exhibits a time complexity of O(n), which stands in
stark contrast to VF2, a widely used subgraph-matching
algorithm with a time complexity of O(n2) in the best-
case scenario and a much less efficient time complexity of
O(n!n) in the worst-case scenario [16].

Theorem 2. Let T be a target graph with order n that has
a bounded degree and is characterized by a group of auto-
morphisms F along with a constant-size generating set S.
Then the SBSM algorithm has a time complexity of O(n),
which is optimal for the subgraph-matching problem.

Proof. The subgraph-matching routine consists of three
steps. First, we determine the reduced search space N r

T(S),
which is the rth-order neighborhood of a generating set
S, where r is the radius of the pattern graph. Calculation

of the graph radius is efficiently performed with use of a
breadth-first search algorithm, with a complexity that is
independent of the order of the target graph [42]. Simi-
larly, as the cardinality of the generating set is constant,
identification of its rth-order neighborhood requires at
most O(n) steps. Second, subgraph matching is conducted
within this reduced search space, and we consider using
the VF2 algorithm, known for its efficiency in subgraph
matching and widely used in applications such as graph
isomorphism tests within NetworkX [43]. Since the tar-
get graph has a bounded degree, the size of the reduced
search space is independent of n. In this case, the time com-
plexity of subgraph matching using VF2 in the reduced
space remains constant [16]. Finally, symmetry transfor-
mations are applied to obtain all isomorphic subgraphs. By
Lemma 3, there are at most O(n) subgraphs isomorphic
to a connected pattern graph in T. So finding all isomor-
phic subgraphs requires only a number of steps linear in n.
As a result, the SBSM algorithm has an overall time com-
plexity of O(n). Note that the subgraph-matching problem
entails finding all isomorphic subgraphs in the target graph,
necessitating a minimum of visiting each vertex at least
once, resulting in a lower bound of �(n) steps in total.
Our SBSM algorithm meets this trivial lower bound, thus
concluding the proof of its optimality. �

Lemma 3. Let T be a target graph with order n that has
a bounded degree of d. Let G be a connected pattern graph
with order m. Then there are at most O(n) subgraphs in the
target graph T that are isomorphic to G.

Proof. A subgraph isomorphism f : G → T embeds the
vertex set V(G) into V(T). Let v1 be a vertex in G. There are
n possible values for f (v1), corresponding to all vertices in
T. Once f (v1) is fixed, we choose a vertex v2 ∈ V(G)\{v1}
that is adjacent to v1. The existence of v2 is ensured by
the connectivity of G. Since f is a subgraph isomorphism
from G to T, f (v2) must be a vertex in T adjacent to f (v1).
As T has a bounded degree of d, each vertex in T has
at most d adjacent vertices. Therefore, there are at most
d possible values for f (v2). Continuing this process, we
consider f (v3), where v3 ∈ V(G)\{v1, v2} and is adjacent
to at least one node in {v1, v2}. Without loss of generality,
we assume that v2 is adjacent to v3 for simplicity. Then
f (v3) must be a vertex in T adjacent to f (v2) because f is
a subgraph isomorphism. As T has a bounded degree of
d, there are at most d possible values for f (v3). By inter-
ating this procedure, we can traverse all the vertices in G
and find their images under f , concluding that there are at
most ndm−1 ways to match vertices that ensure f is a sub-
graph isomorphism. In other words, the total number of
subgraph isomorphisms from G to T is at most ndm−1 with
the dominant factor O(n). �

Theorem 2 demonstrates that our SBSM algorithm
exhibits an optimal time complexity for solving the

024029-7

DI YU and KUN FANG PHYS. REV. APPLIED 22, 024029 (2024)

subgraph-matching problem with symmetries, making it
an ideal choice for the remapping step. This optimal-
ity extends to quantum circuit mapping consisting of the
standard mapping and the incorporation of an additional
remapping process, as exemplified in Algorithm 3. This is
because the initial mapping is independent of the size of
the target quantum processor, and the remapping process
dominates the overall circuit mapping process in the run-
time. This optimality is formally presented in Corollary 2.

Corollary 2. Consider a quantum processor with a cou-
pling graph of order n that has a bounded degree and
is characterized by a group of automorphisms F along
with a constant-size generating set S. Let C be a quantum
circuit to be compiled. Then any quantum circuit map-
ping scheme that comprises circuit-mapping and circuit-
remapping steps requires at least �(n) time. Moreover, the
SBCM algorithm achieves this optimal time complexity.

Proof. Since the remapping process requires at least
�(n) steps, the overall mapping has a time complexity
no less than �(n). In terms of our SBCM algorithm, the
precompilation is independent of the order of the coupling
graph and it requires only O(n) steps to find all isomorphic
graphs. By Lemma 3, there are at most O(n) subgraphs
isomorphic to a connected pattern graph in T. This implies
that the scoring process and the search for the mapping
with the highest score each consume a maximum of O(n)

steps. Hence, the SBCM algorithm has time complexity of
O(n) and it achieves the lower bound. �

IV. BENCHMARKING RESULTS

In this section, we report numerical experiments con-
ducted to assess the performance of our algorithms and
compare them with the existing algorithms such as VF2,
VF2++, and MAPOMATIC. In particular, we consider
quantum processors with grid, octagonal, and heavy-hex

architectures, as depicted in Fig. 2, which are the state-of-
the-art architectures used by Google [18], Rigetti [44], and
IBM [45], respectively. We specifically consider layouts
with equal rows and columns. The test circuit we use is the
five-qubit Deutsch-Jozsa algorithm [46], which is the pio-
neering example of a quantum algorithm that outperforms
classical counterparts and exemplifies the advantages of
using quantum computing for specific problems. All of the
numerical experiments were performed on a MacBook Pro
computer (2020) with an Intel i5 processor and 8 GB of
memory. The source codes are available on Ref. [47].

A. Benchmarking the subgraph-matching algorithms

We compared the runtimes of VF2, VF2++, and our
SBSM algorithm for solving the subgraph-matching prob-
lem. The results are presented in Fig. 3, where the hori-
zontal axis represents the size of the quantum processors
and the vertical axis indicates the runtime for identifying
all isomorphic graphs within the target graph. Notably, as
the size of the hardware increases, the runtime of VF2 and
VF2++ experiences significant growth due to the expan-
sion of the search space for subgraph matching. In contrast,
the SBSM algorithm’s runtime exhibits a gradual increase
with the number of qubits in the hardware. Specifically, for
an 88 200-qubit octagonal-shaped quantum processor, the
SBSM algorithm runs approximately 18 times faster than
VF2 and 13 times faster than VF2++. These benchmarking
results underscore a remarkable performance advantage of
the SBSM algorithm over VF2 and VF2++, making it a
more-suitable choice for the search of circuit mappings to
large-scale quantum computers.

B. Benchmarking the circuit-mapping-scoring
methods

We conducted benchmark tests comparing the runtimes
of both the conventional for-loop method used by MAPO-
MATIC and our vectorized method for evaluating all

FIG. 2. Three typical quantum chip structures. Each node represents a physical qubit, and each edge corresponds to a coupler
between two qubits. (a) 7 × 7 grid coupling graph with 49 qubits. (b) 3 × 3 octagonal coupling graph with 72 qubits. (c) 4 × 2
heavy-hex coupling graph with 67 qubits.

024029-8

SYMMETRY-BASED QUANTUM CIRCUIT MAPPING PHYS. REV. APPLIED 22, 024029 (2024)

× × ×

FIG. 3. Runtime of three subgraph-matching algorithms: VF2 (green) [16], VF2++ (blue) [17], and the SBSM algorithm (red).
These experiments solved the subgraph-matching problem on three quantum hardware architectures. Note that the results for VF2 and
VF2++ coincide in (a).

mappings of a five-qubit Deutsch-Jozsa algorithm on the
three quantum hardware architectures. To account for the
impact of imperfect fabrication and noisy environments,
we assumed that the fidelity of quantum gates follows
a two-dimensional spatial normal distribution, with the
highest gate fidelity assumed to be at the center of the
layout. The results of the numerical experiments are pre-
sented in Fig. 4, where the blue line represents the runtime
of the scoring method used by MAPOMATIC and the
red line shows the runtime of our vectorized scoring.
Evidently, for all three hardware architectures, the vector-
ized method’s runtime is substantially shorter than that of
the conventional for-loop scoring method. Specifically, in
the case of an octagonal-shaped quantum processor with
88 200 qubits, the vectorized method accomplishes this
task approximately 36 times faster than the conventional
scoring function, resulting in an impressive 97% reduc-
tion in runtime. This comparison illustrates the efficiency
gains achieved through vectorization and the substantial
time-saving potential in the circuit-mapping process.

C. Benchmarking the complete-circuit-mapping
algorithms

We conducted benchmarking for the complete quantum
circuit mapping problem, comparing the total runtime of
our SBCM algorithm with that of MAPOMATIC, as they
map the five-qubit Deutsch-Jozsa algorithm onto the three
quantum hardware architectures. The results are depicted
in Fig. 5, where the red line represents the runtime of
the SBCM algorithm and the blue line represents that
of MAPOMATIC. Notably, our SBCM algorithm out-
performs MAPOMATIC for all three hardware architec-
tures, with the runtime of the former being substantially
shorter. For instance, when mapping the input circuit
onto an 88 200-qubit octagonal-shaped quantum proces-
sor, MAPOMATIC took approximately 279 s to find
the optimal circuit mapping, while our SBCM algorithm
completed the same task in just 11 s. This represents an
impressive 96% reduction in runtime. The comparison
results clearly demonstrate the superiority of the SBCM
algorithm over MAPOMATIC for mapping circuits onto

× × ×

FIG. 4. Runtime for scoring circuit mappings with the conventional for-loop method in MAPOMATIC (blue) [14] and our vectorized
approach (red). The experiments were conducted on three distinct quantum hardware architectures.

024029-9

DI YU and KUN FANG PHYS. REV. APPLIED 22, 024029 (2024)

× × ×

FIG. 5. Runtime of two circuit-remapping algorithms: MAPOMATIC (blue) [14] and SBCM (red). The experiments were conducted
on three distinct quantum hardware architectures.

quantum hardware with typical architectures, underscoring
the significance of using hardware symmetries in finding
the optimal circuit mapping.

V. CONCLUSIONS

In this work, we have introduced an efficient algorithm
for identifying all circuit mappings within scalable quan-
tum systems by leveraging its inherent symmetries. This
algorithm is based on a subgraph-matching approach that
harnesses hardware symmetries to significantly reduce the
size of the search space. We have provided theoretical
proof of the optimality of the symmetry-based algorithms
and conducted numerical experiments to confirm their
advantages in practical scenarios. It is worth noting that
the symmetry-based circuit mapping can be integrated with
other existing compilation techniques [48] and helps to
bridge the gap between theoretical quantum algorithms and
their physical implementation on quantum computers with
operational constraints and limited resources.

As scalable quantum processors necessarily possess
symmetries, we envision the potential to leverage hard-
ware symmetries across various aspects of quantum circuit
compilation and beyond. For instance, the intrinsic sym-
metries of quantum devices could be exploited to increase
the efficiency of quantum gate optimizations, dynamic
circuit compilation, and distributed quantum computing
across multiple quantum processors. We believe that ample
opportunities for future research exist to delve deeper into
these promising possibilities.

ACKNOWLEDGMENTS

D.Y. acknowledges valuable discussions with Zhiping
Liu. K.F. is supported by the University Development
Fund (Grant No. UDF01003565) from the Chinese Uni-
versity of Hong Kong, Shenzhen.

[1] P. W. Shor, in Proceedings 35th Annual Symposium on
Foundations of Computer Science, edited by S. Goldwasser
(IEEE Computer Society, 1994), p. 124.

[2] L. K. Grover, in Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing, edited by Gary
L. Miller (Association for Computing Machinery, 1996), p.
212.

[3] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin,
M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B.
J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White,
Towards quantum chemistry on a quantum computer, Nat.
Chem. 2, 106 (2010).

[4] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N.
Wiebe, and S. Lloyd, Quantum machine learning, Nature
549, 195 (2017).

[5] G. Li, Y. Ding, and Y. Xie, in Proceedings of the Twenty-
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
edited by I. Bahar and M. Herlihy (Association for Com-
puting Machinery, New York, 2019), p. 1001.

[6] M. Y. Siraichi, V. F. dos Santos, C. Collange, and F. M. Q.
Pereira, Qubit allocation as a combination of subgraph iso-
morphism and token swapping, Proc. ACM Program. Lang.
3, 1 (2019).

[7] M. Y. Siraichi, V. F. dos Santos, C. Collange, and F. M.
Q. Pereira, in Proceedings of the 2018 International Sym-
posium on Code Generation and Optimization, edited by
J. Knoop and M. Schordan (Association for Computing
Machinery, New York, 2018), p. 113.

[8] R. Wille, L. Burgholzer, and A. Zulehner, in Proceed-
ings of the 56th Annual Design Automation Conference
2019, edited by R. Aitken (Association for Computing
Machinery, New York, 2019), p. 1.

[9] A. Zulehner, S. Gasser, and R. Wille, in International Con-
ference on Reversible Computation, edited by I. Phillips
and H. Rahaman (Springer Cham, 2017), p. 185.

[10] A. Zulehner, A. Paler, and R. Wille, An efficient method-
ology for mapping quantum circuits to the IBM QX archi-
tectures, IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 38, 1226 (2018).

024029-10

https://doi.org/10.1038/nchem.483
https://doi.org/10.1038/nature23474
https://doi.org/10.1145/3360546
https://doi.org/10.1109/TCAD.2018.2846658

SYMMETRY-BASED QUANTUM CIRCUIT MAPPING PHYS. REV. APPLIED 22, 024029 (2024)

[11] B. Tan and J. Cong, in Proceedings of the 39th Interna-
tional Conference on Computer-Aided Design, edited by
Y. Xie (Association for Computing Machinery, New York,
2020), p. 1.

[12] L. Lao, H. Van Someren, I. Ashraf, and C. G. Almudever,
Timing and resource-aware mapping of quantum circuits to
superconducting processors, IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 41, 359 (2021).

[13] C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E.
Z. Zhang, in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (2021), p. 360.

[14] P. D. Nation and M. Treinish, Suppressing quantum circuit
errors due to system variability, PRX Quantum 4, 010327
(2023).

[15] S. A. Cook, in Proceedings of the Third Annual ACM Sym-
posium on Theory of Computing, series and number STOC
’71, edited by M. A. Harrison, R. B. Banerji, and J. D.
Ullman (Association for Computing Machinery, New York,
NY, USA, 1971), p. 151.

[16] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, A (sub)
graph isomorphism algorithm for matching large graphs,
IEEE Trans. Pattern Anal. Mach. Intell. 26, 1367 (2004).

[17] A. Jüttner and P. Madarasi, VF2++—An improved sub-
graph isomorphism algorithm, Discrete Appl. Math. 242,
69 (2018).

[18] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A.
Buell et al., Quantum supremacy using a programmable
superconducting processor, Nature 574, 505 (2019).

[19] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen,
T.-H. Chung, H. Deng, Y. Du, D. Fan et al., Strong quantum
computational advantage using a superconducting quantum
processor, Phys. Rev. Lett. 127, 180501 (2021).

[20] https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-
Qubit-Plus-Quantum-Processor-and-Next-Generation-
IBM-Quantum-System-Two (2022).

[21] https://www.ibm.com/quantum/roadmap (2022).
[22] C. Lyu, X. Xu, M.-H. Yung, and A. Bayat, Symmetry

enhanced variational quantum spin eigensolver, Quantum
7, 899 (2023).

[23] J. J. Meyer, M. Mularski, E. Gil-Fuster, A. A. Mele, F.
Arzani, A. Wilms, and J. Eisert, Exploiting symmetry in
variational quantum machine learning, PRX Quantum 4,
010328 (2023).

[24] X. Wang, K. Fang, and R. Duan, Semidefinite programming
converse bounds for quantum communication, IEEE Trans.
Inf. Theory 65, 2583 (2018).

[25] K. Fang and H. Fawzi, Geometric Rényi divergence and
its applications in quantum channel capacities, Commun.
Math. Phys. 384, 1615 (2021).

[26] K. Fang, X. Wang, M. Tomamichel, and M. Berta,
Quantum channel simulation and the channel’s smooth
max-information, IEEE Trans. Inf. Theory 66, 2129
(2019).

[27] K. Fang, G. Gour, and X. Wang, Towards the ulti-
mate limits of quantum channel discrimination, preprint
arXiv:2110.14842.

[28] K. Fang, O. Fawzi, R. Renner, and D. Sutter, Chain rule for
the quantum relative entropy, Phys. Rev. Lett. 124, 100501
(2020).

[29] M. Hayashi, K. Fang, and K. Wang, Finite block length
analysis on quantum coherence distillation and incoherent
randomness extraction, IEEE Trans. Inf. Theory 67, 3926
(2021).

[30] K. Fang and Z.-W. Liu, No-go theorems for quantum
resource purification: New approach and channel theory,
PRX Quantum 3, 010337 (2022).

[31] K. Fang and Z.-W. Liu, No-go theorems for quan-
tum resource purification, Phys. Rev. Lett. 125, 060405
(2020).

[32] B. Regula, K. Fang, X. Wang, and M. Gu, One-shot entan-
glement distillation beyond local operations and classical
communication, New J. Phys. 21, 103017 (2019).

[33] K. Fang, X. Wang, M. Tomamichel, and R. Duan, Non-
asymptotic entanglement distillation, IEEE Trans. Inf. The-
ory 65, 6454 (2019).

[34] K. Fang and H. Fawzi, The sum-of-squares hierarchy on
the sphere and applications in quantum information theory,
Math. Program. 190, 331 (2021).

[35] M. G. Díaz, K. Fang, X. Wang, M. Rosati, M. Skotiniotis,
J. Calsamiglia, and A. Winter, Using and reusing coherence
to realize quantum processes, Quantum 2, 100 (2018).

[36] K. Fang, X. Wang, L. Lami, B. Regula, and G. Adesso,
Probabilistic distillation of quantum coherence, Phys. Rev.
Lett. 121, 070404 (2018).

[37] B. Regula, K. Fang, X. Wang, and G. Adesso, One-shot
coherence distillation, Phys. Rev. Lett. 121, 010401 (2018).

[38] W. Xie, K. Fang, X. Wang, and R. Duan, Approximate
broadcasting of quantum correlations, Phys. Rev. A 96,
022302 (2017).

[39] M. Qiao, H. Zhang, and H. Cheng, Subgraph matching:
On compression and computation, Proc. VLDB Endow. 11,
176 (2017).

[40] QISKIT, https://qiskit.org (2023).
[41] https://numpy.org/
[42] L. Roditty and V. Vassilevska Williams, in Proceedings

of the Forty-Fifth Annual ACM Symposium on Theory of
Computing (2013), p. 515.

[43] https://networkx.org/documentation/stable/reference/algori
thms/isomorphism.html (2023).

[44] https://qcs.rigetti.com/qpus (2022).
[45] https://research.ibm.com/blog/heavy-hex-lattice (2021).
[46] D. Deutsch and R. Jozsa, Rapid solution of problems by

quantum computation, Proc. R. Soc. Lond. Ser. A: Mathe.
Phys. Sci. 439, 553 (1992).

[47] D. Yu and K. Fang, Symmetry-based quantum circuit
mapping, arXiv:2310.18026 [quant-ph]

[48] K. Fang, M. Zhang, R. Shi, and Y. Li, Dynamic quantum
circuit compilation, preprint arXiv:2310.11021.

024029-11

https://doi.org/10.1109/TCAD.2021.3057583
https://doi.org/10.1103/PRXQuantum.4.010327
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1016/j.dam.2018.02.018
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.127.180501
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two (2022)
https://www.ibm.com/quantum/roadmap
https://doi.org/10.22331/q-2023-01-19-899
https://doi.org/10.1103/PRXQuantum.4.010328
https://doi.org/10.1109/TIT.2018.2874031
https://doi.org/10.1007/s00220-021-04064-4
https://doi.org/10.1109/TIT.2019.2943858
https://arxiv.org/abs/2110.14842
https://doi.org/10.1103/PhysRevLett.124.100501
https://doi.org/10.1109/TIT.2021.3064009
https://doi.org/10.1103/PRXQuantum.3.010337
https://doi.org/10.1103/PhysRevLett.125.060405
https://doi.org/10.1088/1367-2630/ab4732
https://doi.org/10.1109/TIT.2019.2914688
https://doi.org/10.1007/s10107-020-01537-7
https://doi.org/10.22331/q-2018-10-19-100
https://doi.org/10.1103/PhysRevLett.121.070404
https://doi.org/10.1103/PhysRevLett.121.010401
https://doi.org/10.1103/PhysRevA.96.022302
https://doi.org/10.14778/3149193.3149198
https://qiskit.org
https://numpy.org/
https://networkx.org/documentation/stable/reference/algorithms/isomorphism.html
https://qcs.rigetti.com/qpus
https://research.ibm.com/blog/heavy-hex-lattice
https://doi.org/10.1098/rspa.1992.0167
https://arxiv.org/abs/2310.18026
https://arxiv.org/abs/2310.11021

	I. INTRODUCTION
	II. PRELIMINARIES
	A. Notation
	B. Symmetry of graph
	C. Graph distance
	D. Quantum circuit mapping

	III. SYMMETRY-BASED QUANTUM CIRCUIT MAPPING
	A. Symmetry-based subgraph matching
	B. Circuit-mapping scoring through vectorization
	C. Symmetry-based quantum circuit mapping
	D. Computational complexity

	IV. BENCHMARKING RESULTS
	A. Benchmarking the subgraph-matching algorithms
	B. Benchmarking the circuit-mapping-scoring methods
	C. Benchmarking the complete-circuit-mapping algorithms

	V. CONCLUSIONS
	ACKNOWLEDGMENTS
	. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

