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Abstract
The quantum relative entropy is a fundamental quantity in quantum information science,

characterizing the distinguishability between two quantum states. However, this quantity is
not additive in general for correlated quantum states, necessitating regularization for pre-
cise characterization of the operational tasks of interest. Recently, we proposed the study of
the regularized relative entropy between two sequences of sets of quantum states in [arXiv:
2411.04035], which captures a general framework for a wide range of quantum information
tasks. Here, we show that given suitable structural assumptions and efficient descriptions of
the sets, the regularized relative entropy can be efficiently approximated within an additive
error by a quantum relative entropy program of polynomial size. This applies in particular to
the regularized relative entropy in adversarial quantum channel discrimination. Moreover, we
apply the idea of efficient approximation to quantum resource theories. In particular, when
the set of interest does not directly satisfy the required structural assumptions, it can be re-
laxed to one that does. This provides improved and efficient bounds for the entanglement
cost of quantum states and channels, entanglement distillation and magic state distillation.
Numerical results demonstrate improvements even for the first level of approximation.
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1 Introduction

The classical relative entropy, also known as the Kullback-Leibler (KL) divergence [KL51], is a
measure of how much a model probability distribution is different from a true probability distri-
bution. It plays a pivotal role in classical information processing and finds applications in diverse
domains including machine learning [Mur12], data compression [Cov99, Gra11] and statistical
mechanics [Jay57, Cro99]. With the development of quantum information science, the quantum
relative entropy has been proposed as a quantum generalization of the KL divergence [Ume62],

D(ρ∥σ) := Tr[ρ(log ρ− log σ)] (1)

quantifying the distinguishability between quantum states ρ and σ [HP91]. It has found widespread
applications in various fields [SW02, Ved02], including quantum machine learning [BWP+17],
quantum channel coding [Hay17], quantum error correction [CC97], quantum resource theo-
ries [CG19], and quantum cryptography [PAB+20].

A useful property for quantum relative entropy is the additivity between two tensor product
states, i.e., D(ρ1 ⊗ ρ2∥σ1 ⊗ σ2) = D(ρ1∥σ1) +D(ρ2∥σ2). However, this property does not hold
for general correlated quantum states, i.e., D(ρ12∥σ12) ̸= D(ρ1∥σ1) + D(ρ2∥σ2), necessitating
regularization for precise characterization of operational tasks of interest. Recently, we proposed
in [FFF24] the study of the regularized quantum relative entropy between two sequences of sets
of quantum states An, Bn acting on H⊗n for some Hilbert space H:

D∞(A ∥B) := lim
n→∞

1

n
D(An∥Bn), (2)

where D(An∥Bn) = infρ∈An,σ∈Bn D(ρ∥σ). This quantity captures a general framework for
a wide range of quantum information tasks. This includes quantum hypothesis testing [HP91,
NO00, BP10, BHLP20, BBH21, MSW22, HY24, Lam24] and quantum channel discrimination
[BHLP20, FFRS20, FGW21, FFF24] from a foundational perspective, entropy accumulation the-
orems for quantum cryptography [DFR20, MFSR22], and quantum resource distillation [BP10,
Rai01, ADMVW02, FWTD19, RFWG19, BK05, VMGE14, FL20, WWS20] and preparation
[WD17b, WD17a, WJZ23, LR23], which are crucial for quantum computing and quantum net-
working.

In general, computing D∞(A ∥B) is challenging due to the limit, which we refer to as “reg-
ularization”. One notable example is given by the regularized relative entropy of entanglement

D∞(ρAB∥SEP) := lim
n→∞

1

n
D(ρ⊗n

AB∥SEP(An : Bn)), (3)

where SEP(An : Bn) denotes the set of all separable states between Hilbert spaces H⊗n
A and H⊗n

B .
This quantity uniquely determines the ultimate limits of entanglement manipulation and serves as
the key quantity in understanding the second law of quantum entanglement [BP10, HY24, Lam24].
However, evaluating this quantity is extremly hard in general, as it involves the regularization as
well as the separability problem [Gur03].

Our results In this work, we show in Theorem 10 that given suitable structural assumptions (in
particular the stability of the polar set under tensor product) and efficient descriptions of the sets,
the regularized relative entropy D∞(A ∥B) can be efficiently approximated within an additive
error by a quantum relative entropy program of polynomial size. We then apply this result in
Section 4 to several problems in quantum information theory. The first application (Section 4.1)
is to compute the regularized relative entropy between the image sets of two quantum channels,
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which characterizes the optimal exponent in adversarial channel discrimination [FFF24]. For this
problem, the relevant sets satisfy the structural assumptions. In the following applications, this
will not be the case, but the sets can be relaxed to sets that do satisfy the requirements. For
instance, in entanglement theory, the set of separable states can be relaxed to the Rains set [Rai01,
ADMVW02], which satisfies all necessary assumptions. We illustrate this by obtaining bounds
(Section 4.2) on the entanglement cost of quantum states and channels improving on [WD17b,
WD17a, WJZ23, LR23]. Numerical results demonstrate improvements even for the first level of
approximation. This approach can also be applied to obtain improved bounds on entanglement
distillation [Rai01, ADMVW02, BP10] as discussed in Section 4.3. Similarly, in fault-tolerant
quantum computing, the set of stabilizer states can be relaxed to the set of states with non-positive
mana [VMGE14], which also fulfills the required conditions. As described in Section 4.4, this can
be used to obtain improved bounds for magic state distillation.

Generally, our result can be applied by verifying the conditions of the relevant theory and
performing necessary relaxations when required. Therefore, we anticipate that this approach has
the potential for other applications beyond the specific cases discussed here.

2 Preliminaries

2.1 Notations

In this section we set the notations and define several quantities that will be used throughout this
work. Some frequently used notations are summarized in Table 1. Note that we label different
physical systems by capital Latin letters and use these labels as subscripts to guide the reader by
indicating which system a mathematical object belongs to. We drop the subscripts when they are
evident in the context of an expression (or if we are not talking about a specific system).

Notations Descriptions
HA Hilbert space on system A

L (A) Linear operators on HA

H (A) Hermitian operators on HA

H+(A) Positive semidefinite operators on HA

H++(A) Positive definite operators on HA

D(A) Density matrices on HA

A ,B,C Set of linear operators
C ◦ Polar set C ◦ := {X : Tr[XY ] ≤ 1, ∀Y ∈ C } of C

C ◦
+ Polar set restricted to positive semidefinite cone C ◦ ∩ H+

C ◦
++ Polar set restricted to positive definite operators C ◦ ∩ H++

CPTP Completely positive and trace preserving maps
CP Completely positive maps
log(x) Logarithm of x in base two

Table 1: Overview of notational conventions.

2.2 Polar set and support function

In the following, we introduce the definitions of the polar set and support function, along with a
fundamental result that will be used in our discussions.
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Definition 1. Let C ⊆ E be a convex set in some Euclidean space E . Its polar set is defined by

C ◦ := {X ∈ E : Tr[XY ] ≤ 1, ∀Y ∈ C }. (4)

Let C ◦
+ := C ◦ ∩ H+ and C ◦

++ := C ◦ ∩ H++ be the intersections with positive semidefinite
operators and positive definite operators, respectively. The support function of C at ω is defined
by hC (ω) = supσ∈C Tr[σω].

It is clear from the definitions that ω ∈ C ◦ if and only if hC (ω) ≤ 1.

Definition 2. Let H1 and H2 be finite-dimensional Hilbert spaces. Consider three sets A1 ⊆
H+(H1), A2 ⊆ H+(H2), and A12 ⊆ H+(H1 ⊗ H2). We call {A1,A2,A12} is closed under
tensor product if for any X1 ∈ A1, X2 ∈ A2, we have X1 ⊗ X2 ∈ A12. In short, we write
A1 ⊗ A2 ⊆ A12.

The following lemma provides an equivalent condition for determining if the polar sets of
interest are closed under tensor product, which can be easier to validate for specific examples.

Lemma 3. [FFF24, Lemma 8] Let H1 and H2 be finite-dimensional Hilbert spaces. Consider
three sets A1 ⊆ H+(H1), A2 ⊆ H+(H2), and A12 ⊆ H+(H1⊗H2). Their polar sets are closed
under tensor product if and only if their support functions are sub-multiplicative. That is,

(A1)
◦
+ ⊗ (A2)

◦
+ ⊆ (A12)

◦
+ ⇐⇒ hA12(X1 ⊗X2) ≤ hA1(X1)hA2(X2), ∀Xi ∈ H+(Hi). (5)

2.3 Quantum divergences

A functional D : D×H+ → R is a quantum divergence if it satisfies the data-processing inequality
D(E(ρ)∥E(σ)) ≤ D(ρ∥σ) for any CPTP map E . In the following, we will introduce several
quantum divergences and their fundamental properties, which will be used throughout this work.
Additionally, we will define quantum divergences between two sets of quantum states, which will
be the main quantity of interest in this work.

Definition 4. (Umegaki relative entropy [Ume54].) For any ρ ∈ D and σ ∈ H+, the Umegaki
relative entropy is defined by

D(ρ∥σ) := Tr[ρ(log ρ− log σ)], (6)

if supp(ρ) ⊆ supp(σ) and +∞ otherwise.

The min-relative entropy is defined by

Dmin(ρ∥σ) := − log Tr[Πρσ], (7)

with Πρ the projection on the support of ρ. The max-relative entropy is defined by [Dat09, Ren05],

Dmax(ρ∥σ) := log inf
{
t ∈ R : ρ ≤ tσ

}
, (8)

if supp(ρ) ⊆ supp(σ) and +∞ otherwise.

Definition 5. (Measured relative entropy [Don86, HP91].) For any ρ ∈ D and σ ∈ H+, the
measured relative entropy is defined by

DM(ρ∥σ) := sup
(X ,M)

D(Pρ,M∥Pσ,M ), (9)

where D is the Kullback–Leibler divergence and the optimization is over finite sets X and positive
operator valued measures M on X such that Mx ≥ 0 and

∑
x∈X Mx = I , Pρ,M is a measure on

X defined via the relation Pρ,M (x) = Tr[Mxρ] for any x ∈ X .
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A variational expression for DM is given by [BFT17, Lemma 1],

DM(ρ∥σ) = sup
ω∈H++

Tr[ρ logω] + 1− Tr[σω]. (10)

Definition 6. (Measured Rényi divergence [BFT17].) Let α ∈ (0, 1) ∪ (1,∞). For any ρ ∈ D
and σ ∈ H+, the measured Rényi divergence is defined as

DM,α(ρ∥σ) := sup
(X ,M)

Dα(Pρ,M∥Pσ,M ), (11)

where Dα is the classical Rényi divergence.

The following result shows the ordering relation among different relative entropies.

Lemma 7. Let α ∈ [1/2, 1). For any ρ ∈ D and σ ∈ H+,

Dmin(ρ∥σ) ≤ DM,α(ρ∥σ) ≤ DM(ρ∥σ) ≤ D(ρ∥σ). (12)

Proof. The last two inequalities follow from the monotonicity in α of the classical Rényi diver-
gences and the data processing inequality for D. As DM,α is monotone increasing in α, it remains
to show the first inequality for α = 1

2 . By the variational formula in [BFT17, Eq. (21)], we have

DM,1/2(ρ∥σ) = − log inf
ω∈H++

Tr[ρω−1] Tr[σω], (13)

which is the same as the Alberti’s theorem for quantum fidelity (see e.g. [Wat18, Corollary 3.20]).
Consider a feasible solution ωε = Πρ + ε(I − Πρ) ∈ H++ with ε > 0. It gives DM,1/2(ρ∥σ) ≥
− log Tr[ρω−1

ε ] Tr[σωε]. Since ρ has trace one, it gives Tr[ρω−1
ε ] = Tr[ρ] = 1. Then we have

DM,1/2(ρ∥σ) ≥ − log Tr[σωε] = − log[(1− ε) TrΠρσ + ε]. (14)

As the above holds for any ε > 0, we take ε → 0+ and get DM,1/2(ρ∥σ) ≥ − log Tr[Πρσ] =
Dmin(ρ∥σ), which completes the proof. ⊓⊔

In this work, we will focus on the study of quantum divergences between two sets of quantum
states.

Definition 8. (Quantum divergence between two sets of states.) Let D be a quantum divergence
between two quantum states. Then for any sets A ⊆ D and B ⊆ H+, the quantum divergence
between these two sets of quantum states is defined by

D(A ∥B) := inf
ρ∈A
σ∈B

D(ρ∥σ). (15)

From the geometric perspective, this quantity characterizes the distance between two sets
A and B under the “distance metric” D. In particular, if A = {ρ} is a singleton, we write
D(ρ∥B) := D({ρ}∥B). For two sequences of sets {An}n∈N and {Bn}n∈N, the regularized
divergence is defined by

D∞(A ∥B) := lim
n→∞

1

n
D(An∥Bn), (16)

whenever the limit on the right-hand side exists.
In particular, we will focus on the sequences of sets satisfying the following assumptions.

Assumption 9. Consider a family of sets {An}n∈N satisfying the following properties,

• (A.1) Each An is convex and compact;

• (A.2) Each An is permutation-invariant;

• (A.3) Am ⊗ Ak ⊆ Am+k, for all m, k ∈ N;

• (A.4) (Am)◦+ ⊗ (Ak)
◦
+ ⊆ (Am+k)

◦
+, for all m, k ∈ N.
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3 Efficient approximation of regularized relative entropies

In this section, we demonstrate that the regularized relative entropy D∞(A ∥B) can be efficiently
approximated given efficient descriptions of {An}n∈N and {Bn}n∈N. The main result is presented
below, with some technical definitions provided later.

Theorem 10 (Efficient approximation of regularized relative entropies). Let H be a Hilbert space
of finite dimension d. Let {An}n∈N and {Bn}n∈N be two sequences of sets satisfying Assump-
tion 9 and An ⊆ D(H⊗n), Bn ⊆ H+(H⊗n) and Dmax(An∥Bn) ≤ cn, for all n ∈ N and a
constant c ∈ R+. If each Am and Bm have semidefinite (SDP) representations of size s2m sat-
isfying the symmetry conditions in Lemma 19, then both D(Am∥Bm) and DM(Am∥Bm) can be
computed by quantum relative entropy programs of size O((m+ 1)k

2
) with k = max{s, d}.

As a result, D∞(A ∥B) can be approximated within additive error δ by a quantum relative
entropy program of size O((m0 + 1)k

2
) with m0 = ⌈8d2δ log d2

δ ⌉.

Note that quantum relative entropy programs can be efficiently solved using interior point
methods, as shown in [FS23, HSF24a]. Moreover, a numerical toolkit named QICS (Quantum
Information Conic Solver) has been developed in [HSF24b] to solve these programs efficiently in
practice.

The remaining part of this section will provide a proof of the above result. We begin by defin-
ing quantum relative entropy programs and then show that the converging bounds for D∞(A ∥B),
derived from [FFF24] under structural assumptions on the sets An and Bn, allow for an approx-
imation of D∞(A ∥B) using quantum relative entropy programs. We then exploit the symmetry
in these sets to reduce the size of the convex programs.

3.1 Quantum relative entropy programs

Definition 11 (Conic program). A conic program over a convex cone K ⊆ E is an optimization
problem of the form minx∈E {⟨c, x⟩ : x ∈ K, F (x) = g} where F : E → F is a linear map and
g ∈ F [BTN01, Chapter 2]. The size of the program is defined as dim(K).

Motivated by the conic program, we introduce the conic representation of a convex set [GPT13].

Definition 12 (Conic representation). A convex set C ⊆ E has a conic representation over K
if it can be written as C = {Π(x) : x ∈ K, F (x) = g} where Π : linspan(K) → E and
F : linspan(K) → F are linear maps. The size of the representation is dim(K).

Clearly, if a convex set C has a conic representation over K, then any linear optimization
problem over C can be expressed as a conic program over K. We recall below the standard
definition of a semidefinite representation of a convex set [GPT13, Definition 1].

Definition 13 (SDP representation). A convex set C ⊆ E has a SDP representation of size1 s2

if it can be written as C = {Π(x) : x ∈ H+(Cs), F (x) = g}, where Π : H (Cs) → E and
F : H (Cs) → F are linear maps and g ∈ F .

Definition 14 (Quantum relative entropy program). A quantum relative entropy program is a conic
program over a Cartesian product of positive semidefinite cones, quantum relative entropy cones,
and operator relative entropy cones. The quantum relative entropy cone is defined as [CS17,
HSF24a, HSF24b]:

Kqre(Cn) := cl{(A,B, t) ∈ H+(Cn)× H+(Cn)× R : A ≪ B, D(A∥B) ≤ t}, (17)

1 We adopt this convention for consistency with Definition 12. This convention is different from existing conventions in
the literature where the size of the representation would be s instead of s2.

6



where A ≪ B indicates that the support of A is included in the support of B. The operator
relative entropy cone is defined as:

Kore(Cn) := cl{(A,B, T ) ∈ H++(Cn)× H++(Cn)× H (Cn) : A ≪ B, Dop(A∥B) ≤ T},
(18)

with Dop(A∥B) := A1/2 log(A1/2B−1A1/2)A1/2 being the operator relative entropy.

The following well-known proposition will be useful later, see e.g., [Net12, Lemma 4.1.8].
We include a sketch for convenience.

Lemma 15. Let C be a convex set in some Euclidean space E . If C has an SDP representation
of size s2, then the epigraph of its support function

epi(hC ) := {(w, t) ∈ E × R : hC (w) ≤ t}. (19)

has an SDP representation of size s2 + 1.

Proof sketch. Assume C has an SDP representation as in Definition 13 of size s2. Given w ∈ E
we have

hC (w) := sup
z∈C

⟨w, z⟩ (20)

= sup{⟨w,Π(Y )⟩ : Y ∈ H+(Cs), F (Y ) = g} (21)

= inf
λ∈F

{⟨λ, g⟩ : F ∗(λ)−Π∗(w) ≥ 0} (22)

where F ∗ and Π∗ denote respectively the adjoint maps of F : H (Cs) → F and Π : H (Cs) →
E , and the last step follows from SDP duality (assuming that the SDP in (21) is strictly feasible).
This shows that

epi(hC ) = {(w, t) ∈ E × R : ∃λ ∈ F s.t. ⟨λ, g⟩ ≤ t and F ∗(λ)−Π∗(w) ∈ H+(Cs)}
which is a semidefinite representation of epi(hC ) of size s2 + 1. ⊓⊔

3.2 Efficient approximation by symmetry reduction

With the above definitions, we now show that the converging bounds for D∞(A ∥B), derived
from [FFF24] under structural assumptions on the sets An and Bn, allow for an efficient approx-
imation of D∞(A ∥B) using quantum relative entropy programs.

Lemma 16. [FFF24, Lemma 29, 30] Let H be a Hilbert space of finite dimension d. Let {An}n∈N
and {Bn}n∈N be two sequences of sets satisfying Assumption 9 and An ⊆ D(H⊗n), Bn ⊆
H+(H⊗n) and Dmax(An∥Bn) ≤ cn, for all n ∈ N and a constant c ∈ R+. Then the regularized
relative entropy D∞(A ∥B) can be estimated using the following bounds:

1

m
DM(Am∥Bm) ≤ D∞(A ∥B) ≤ 1

m
D(Am∥Bm), ∀m ≥ 1, (23)

with explicit convergence guarantees

1

m
D(Am∥Bm)− 1

m
DM(Am∥Bm) ≤ 1

m
2(d2 + d) log(m+ d). (24)

Proposition 17. (Approximation of regularized relative entropies.) Assume the same conditions
for {An}n∈N and {Bn}n∈N as in Lemma 16. If each Am and Bm have SDP representations
of size s2m, then D(Am∥Bm) and DM(Am∥Bm) can be computed by quantum relative entropy
programs of size O(k2m) with k = max{s, d}.

As a result, we can approximate D∞(A ∥B) within additive error δ by a quantum relative
entropy program of size O(k2m0) with m0 = ⌈8d2δ log d2

δ ⌉ using Eq. (24).
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Proof. Suppose Am and Bm have SDP representations as

Am =
{
Πm(X) : X ∈ H+(Csm), Fm(X) = gm

}
, (25)

Bm =
{
Π′

m(X ′) : X ′ ∈ H+(Csm), F ′
m(X ′) = g′m

}
. (26)

Then for the quantum relative entropy, we can write

D(Am∥Bm) = inf {t : ρm ∈ Am, σm ∈ Bm, t ≥ D(ρm∥σm)} (27)

= inf
{
t : ρm ∈ Am, σm ∈ Bm, (ρm, σm, t) ∈ Kqre

}
(28)

= inf
{
t : ρm = Πm(X), σm = Π′

m(X ′), Fm(X) = gm, F ′
m(X ′) = g′m (29)

((ρm, σm, t), X,X ′) ∈ Kqre × H+(Csm)× H+(Csm)
}

(30)

which is a quantum relative entropy program of size 2d2m+2s2m+1 = O(k2m). For the measured
relative entropy, we have from [FFF24, Lemma 20] that

DM(Am∥Bm) = sup
Wm∈(Bm)◦++

−hAm(− logWm). (31)

We now proceed to write the convex program more explicitly. Since Am ⊆ H+, we know that
hAm is operator monotone (i.e., hAm(X) ≤ hAm(Y ) if X ≤ Y ). This gives

DM(Am∥Bm) = sup
Wm,Vm

{−hAm(Vm) : Wm ∈ (Bm)◦++, Vm ≥ − logWm} . (32)

Noting that hAm(Vm + t′Im) = hAm(Vm) + t′ as Am ⊆ D , we have

hAm(Vm) = inf
t′

{
hAm(Vm + t′Im)− t′ : Vm + t′Im ≥ 0

}
(33)

= inf
t,t′

{
t− t′ : t > 0, Vm + t′Im ∈ tA ◦

m, Vm + t′Im ≥ 0
}
. (34)

Taking this into Eq. (32), we have

DM(Am∥Bm) = sup
Wm,Vm,t,t′

{
t′ − t : t > 0, (Wm, 1) ∈ epi(hBm), (35)

(Vm + t′Im, t) ∈ epi(hAm), (Im,Wm, Vm) ∈ Kore

}
which is also a quantum relative entropy program of size 2s2m + 2 + 3d2m = O(k2m) by
Lemma 15. ⊓⊔

The above result shows that the regularized relative entropy D∞(A ∥B) can be estimated
using quantum relative entropy programs but with size exponential in the dimension max{d, s}.
In the following, we aim to exploit the permutation invariance of Am and Bm to reduce the
complexity and make the estimation more efficient. For this, we first show that the optimal solution
of the relative entropy programs can be restricted to permutation invariant states.

Let k ∈ N be a fixed integer and H be a finite-dimensional vector space with dim(H) = d.
Then the natural action of the symmetric group Sk on H⊗k by permuting the indices is given by

π · (h1 ⊗ · · · ⊗ hk) = hπ−1(1) ⊗ · · · ⊗ hπ−1(k), (36)

for any hi ∈ H and π ∈ Sk. Let Pπ be the permutation operator corresponding to the action of
π on the suitable space. Denote the twirling operation as Tk(X) := 1

|Sk|
∑

π∈Sk
PπXP †

π . The
algebra of Sk-invariant operators on H⊗k is denoted by

Ik :=
{
X ∈ L (H⊗k) : PπXP †

π = X,∀π ∈ Sk

}
. (37)
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Lemma 18. Let Am ⊆ D(H⊗m) and Bm ⊆ H+(H⊗m) be convex, compact, permutation in-
variant sets. Then we have that

D(Am∥Bm) = D(Am ∩ Im∥Bm ∩ Im), (38)

DM(Am∥Bm) = DM(Am ∩ Im∥Bm ∩ Im). (39)

Proof. The direction of “≤” is clear for both equations. We now show the other direction. For the
case of quantum relative entropy, we have that for any ρm ∈ Am and σm ∈ Bm,

D(ρm∥σm) ≥ D(Tm(ρm)∥Tm(σm)) ≥ D(Am ∩ Im∥Bm ∩ Im), (40)

where the first inequality follows by the data-processing inequality of quantum relative entropy
and the second inequality follows because Tm(ρm) ∈ Am ∩Im and Tm(σm) ∈ Bm ∩Im by the
permutation invariance of Am and Bm. Optimizing ρm ∈ Am and σm ∈ Bm on both sides, we
get D(Am∥Bm) ≥ D(Am ∩ Im∥Bm ∩ Im). The case of measured relative entropy follows by
the same argument. ⊓⊔

The following result gives the SDP representation of the intersection of Am and Im.

Lemma 19. If the SDP representation of Am in Eq. (13) satisfies the symmetry conditions: (1)
Πm(PπXP †

π) = PπΠm(X)P †
π; (2) Fm(PπXP †

π) = PπFm(X)P †
π; and (3) PπgmP †

π = gm for
any X ∈ H+((Cs)⊗m) and any permutation operator Pπ on the suitable spaces, then

Am ∩ Im =
{
Πm(X) : X ∈ H+((Cs)⊗m) ∩ Im, Fm(X) = gm

}
. (41)

Proof. We consider the inclusion “⊇” first. For any Πm(X) with X ∈ H+((Cs)⊗m) ∩ Im and
Fm(X) = gm, it is clear that Πm(X) ∈ Am and moreover, we have

PπΠm(X)P †
π = Πm(PπXP †

π) = Πm(X), (42)

where the first equality follows from the assumption of Πm and the second equality follows as X ∈
Im. As this holds for any π ∈ Sm, we have Πm(X) ∈ Im and therefore Πm(X) ∈ Am ∩ Im.
Now we prove the inclusion “⊆”. For any Πm(X) ∈ Im with X ∈ H+((Cs)⊗m), Fm(X) = gm,
we have

Πm(Tm(X)) = Tm(Πm(X)) = Πm(X), (43)

where the first equality follows from the linearity and permutation invariant assumption of Πm

and the second equality follows as Πm(X) ∈ Im. Similarly, we can argue that Fm(Tm(X)) =
Tm(gm) = gm. This implies that Πm(X) belongs to the set on the right hand side of Eq. (41)
because T (X) ∈ H+((Cs)⊗m) ∩ Im. This concludes the proof. ⊓⊔

Next, we apply representation theory to reduce the size of the SDP representation for Am ∩
Im. For that, we follow the notation in [FST22]. The set Im of operators acting on H that are
invariant under permutation is isomorphic to a direct sum of matrix algebras. In order to describe
the optimization problems, we have to describe this isomorphism explicitly. For that, let Par(d,m)
be the set of partitions λ of m of height d (i.e., λ1 ≥ · · · ≥ λd > 0 with λ1 + · · ·+ λd = m), Tλ,d
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be the set of semistandard λ-tableaux with entries in [d] and mH
λ = |Tλ,dH | (see [FST22] for more

details on these concepts). We then define the map

ϕH : Im(H⊗m) →
⊕

λ∈Par(dH,m)

CmH
λ ×mH

λ with X 7→
⊕

λ∈Par(dH,m)

(⟨Xuγ , uτ ⟩)τ,γ∈Tλ,dH
,

(44)

where {uτ}τ∈Tλ,dH
are vectors in H⊗m the exact definition of which can be found in [FST22];

see also [LPS17, Section 2.1] for more details.
Note that in this decomposition, the number of blocks and the size of the blocks are bounded

by a polynomial in m. In particular, we have

tH := |Par (dH,m)| ≤ (m+ 1)dH , (45)

mH
λ := |Tλ,dH | ≤ (m+ 1)dH(dH−1)/2, ∀λ ∈ Par (dH,m) . (46)

Therefore, we get the dimension of the permutation-invariant subspace as

mH := dim [Im] ≤ (m+ 1)d
2
H . (47)

With the SDP representation of Am ∩Im in Lemma 19, we can now apply the linear map ϕH
in Eq. (44) to decompose the operator X on the exponentially large space into a block-diagonal
form. Specifically, let H1 = Cs, H2 = Cd and H3 = Cf , and define

Π′
m :

⊕
λ∈Par(s,m)

Cm
H1
λ ×m

H1
λ →

⊕
λ∈Par(d,m)

Cm
H2
λ ×m

H2
λ with X 7→ ϕH2(Πm(ϕ−1

H1
(X))),

(48)

and

F ′
m :

⊕
λ∈Par(s,m)

Cm
H1
λ ×m

H1
λ →

⊕
λ∈Par(f,m)

Cm
H3
λ ×m

H3
λ with X 7→ ϕH3(Fm(ϕ−1

H1
(X))),

(49)

and the linear operator g′m = ϕH3(gm). With these notations, we have the following SDP repre-
sentation.

Lemma 20. Let H1 = Cs and H2 = Cd. Then the SDP representation in Eq. (41) gives

ϕH2(Am ∩ Im) =

{
Π′

m

( ⊕
λ∈Par(s,m)

Xλ

)
: (50)

∀λ ∈ Par(s,m), Xλ ∈ H+

(
Cm

H1
λ

)
, F ′

m

( ⊕
λ∈Par(s,m)

Xλ

)
= g′m

}
,

where the SDP representation on the right hand side is of size at most (m+ 1)s
2
.

Proof. We show the inclusion “⊆” first. For any element ϕH2(Πm(X)) ∈ ϕH2(Am ∩ Im), we
have X ∈ H+((Cs)⊗m)∩Im and Fm(X) = gm. Let X ′ = ϕH1(X). Then X ′ ∈ H+(H⊗m

1 ) and

X ′ ∈ ⊕λ∈Par(s,m)Cm
H1
λ ×m

H1
λ . Moreover, ϕH2(Πm(X)) = Π′

m(X ′) and F ′
m(X ′) = g′m. This

implies that ϕH2(Πm(X)) is included in the right-hand side of Eq. (50).
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Now we show the other inclusion “⊇”. For any element Π′
m(X) with X ∈ H+(H⊗m

1 ),

X ∈ ⊕
λ∈Par(d,m)Cm

H1
λ ×m

H1
λ and F ′

m(X) = g′m, let X ′′ = ϕ−1
H1

(X). Then we have X ′′ ∈
H+((Cd)⊗m) ∩ Im, Π′

m(X) = ϕH2(Πm(X ′′)) and Fm(X ′′) = gm. This implies Π′
m(X) ∈

ϕH2(Am ∩ Im) and concludes the proof. ⊓⊔

Combining Lemmas 18, 19 and 20, we have

D(Am∥Bm) = D(ϕH2(Am ∩ Im)∥ϕH2(Bm ∩ Im)), (51)

DM(Am∥Bm) = DM(ϕH2(Am ∩ Im)∥ϕH2(Bm ∩ Im)). (52)

Together with Proposition 17, we get the efficient approximation of regularized relative entropies
presented in Theorem 10.

4 Applications

In this section, we apply the idea of efficient approximation to several quantum information pro-
cessing tasks. Note that the applicability of our approximation relies on the structural assumptions
of the sets in Assumption 9, which holds directly for many cases such as the singleton set, the set
of incoherent states used in coherence theory and the image set of a channel used in adversarial
channel discrimination. We exemplify the last case in Section 4.1. In cases where the task of inter-
est does not directly satisfy Assumption 9, one can follow a general methodology of relaxing the
set of interest to one that does, particularly regarding the polar assumption in (A.4). For instance,
in entanglement theory, the set of separable states can be relaxed to the Rains set, which satisfies
all necessary assumptions. Similarly, in fault-tolerant quantum computing, the set of stabilizer
states can be relaxed to the set of states with non-positive mana, which also fulfills the required
conditions. We provide several examples in Sections 4.2, 4.3 and 4.4 to illustrate this idea, which
gives improvement to the state-of-the-art results in the literature.

4.1 Adversarial quantum channel discrimination

We now apply the general theory in Theorem 10 to compute the minimum output channel diver-
gence, which serves as the key quantity in adversarial quantum channel discrimination [FFF24].

Definition 21. (Minimum output quantum channel divergence.) Let D be a quantum divergence
between quantum states. Let N ∈ CPTP(A : B) and M ∈ CP(A : B). Define the corresponding
minimum output channel divergence by

Dinf(N∥M) := inf
ρ∈D(A)
σ∈D(A)

D(NA→B(ρA)∥MA→B(σA)). (53)

Define its regularized channel divergence by

Dinf,∞(N∥M) := lim
n→∞

1

n
Dinf(N⊗n∥M⊗n). (54)

The following result shows that the regularized channel divergence can be efficiently approx-
imated by quantum relative entropy programs.

Corollary 22. (Efficient approximation of the regularized minimum output channel divergences.)
Let N ∈ CPTP(A : B) and M ∈ CP(A : B) with dimA = s and dimB = d. The minimum out-
put quantum channel divergences D(N⊗m∥M⊗m) and DM(N⊗m∥M⊗m) can both be computed
by quantum relative entropy programs of size O((m+ 1)k

2
) with k = max{s, d}.

As a result, Dinf,∞(N∥M) can be approximated within additive error δ by a quantum relative
entropy program of size O((m0 + 1)k

2
) with m0 = ⌈8d2δ log d2

δ ⌉.
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Proof. It is clear that the minimum output channel divergence is the divergence between the image
sets of the channels,

Am = {N⊗m(ρ) : ρ ∈ H+
(
(Cs)⊗m

)
,Tr ρ = 1}, (55)

Bm = {M⊗m(ρ) : ρ ∈ H+
(
(Cs)⊗m

)
,Tr ρ = 1}. (56)

These sets satisfy all the required assumptions in Assumption 9 [FFF24, Lemma 42]. Moreover,
Am = {N⊗m(ρ) : ρ ∈ H+((Cs)⊗m),Tr ρ = 1} is a SDP representation of size s2m and Πm =
N⊗m, Fm = Tr, gm = 1 satisfy the symmetry conditions in Lemma 19. The same holds for Bm.
Applying Theorem 10, we have the asserted statement. ⊓⊔

In the following, we provide an explicit example to show that the regularized minimum output
channel divergence D∞,inf(N∥M) can be approximated by Dinf(N⊗m∥M⊗m)/m from above
and Dinf

M (N⊗m∥M⊗m)/m from below, with the approximation improving as m increases.

Measured relative entropy: figures
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Figure 1: Estimating the regularized minimum output channel divergences.

This example is given by two qutrit quantum channels. Let N (·) = Tr[·]|ρ⟩⟨ρ| to be the
replacer channel with |ρ⟩ = (2|0⟩ + |1⟩ + 2|2⟩)/3. Let M be the platypus channel [LLS+23,
Eq. (170)], M(X) = M0XM †

0 +M1XM †
1 with Kraus operators

M0 =


√
p 0 0

0 0 0

0 1 0

 , M1 =

 0 0 0√
1− p 0 0

0 0 1

 . (57)

Since M(I/3) = (p|0⟩⟨0| + (1 − p)|1⟩⟨1| + 2|2⟩⟨2|)/3 is a full rank state for all p ∈ (0, 1), the
following quantities are finite and can be evaluated by the QICS package [HSF24b],

Dinf(N⊗m∥M⊗m) = inf
σm∈D

D(ρ⊗m∥M⊗m(σm)), (58)

Dinf
M (N⊗m∥M⊗m) = inf

σm∈D
DM(ρ

⊗m∥M⊗m(σm)). (59)

The numerical result is given in Figure 1. It shows a clear separation between upper bounds
with m = 1, 2, 3 and p ∈ [0.01, 0.1] and also lower bounds with the same parameter range, con-
firming the strict subadditivity of the minimum output Umegaki channel divergence and the strict
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superadditivity of the minimum output measured channel divergence. Moreover, as we increase
the number of m, the lower and upper bounds provide better approximation to D∞,inf(N∥M).

4.2 Entanglement cost for quantum states and channels

The entanglement cost of a quantum state, denoted as EC,Ω, is the minimum number of Bell states
required to prepare one copy of this state under a class of operations Ω. Of particular interest is
the local operation and classical communication (LOCC) operations. It is known that computing
EC,LOCC is NP-hard in general [Hua14, Theorem 1]. Therefore, finding efficiently computable
lower and upper bounds to estimate EC,LOCC is of fundamental importance. Here, we focus on
deriving lower bounds, which indicate that no matter what preparation strategies are used, the
amount of entanglement consumed cannot be smaller than this value.

There are several lower bounds in the literature, but they are unsatisfactory for different
reasons. One such lower bound is given by the regularized PPT-relative entropy of entangle-
ment [Hay17, Eq. (8.235)],

EC,LOCC(ρ) ≥ D∞(ρ∥PPT) := lim
n→∞

1

n
D(ρ⊗n∥PPT(An : Bn)), (60)

which is difficult to evaluate due to its regularization. Note that the PPT set does not satisfy the
assumption (A.4) and therefore cannot directly apply Theorem 10. A counter-example can be
given by the projector on the C3 ⊗ C3 antisymmetric subspace, denoted as ρa. Since the support
function hCPPT(·) is given by a semidefinite program, we find numerically that hPPT((ρ

a)⊗2) −
hPPT(ρ

a)2 ≈ 0.0093 > 0.
A single-letter lower bound for entanglement cost is provided by the quantum squashed entan-

glement [CW04], but its computability remains uncertain due to the unbounded dimension of the
extension system. Wang and Duan have proposed two single-letter SDP lower bounds in separate
works:

EWD,1(ρAB) := − logmaxTrΠρVAB s.t. ∥V TB
AB ∥1 = 1, VAB ≥ 0, [WD17b] (61)

EWD,2(ρAB) := − logmin ∥Y TB
AB ∥∞ s.t. − YAB ≤ ΠTB

ρ ≤ YAB. [WD17a] (62)

It has been shown that for any ρ ∈ D(AB),

max
{
EWD,1(ρ), EWD,2(ρ)

}
≤ D∞(ρ∥PPT) ≤ EC,LOCC(ρ). (63)

By the definition of min-relative entropy and the Rains set, we can write 2

EWD,1(ρAB) = Dmin(ρAB∥Rains(A : B)). (64)

After a detailed examination of the dual program for EWD,2, we can also reformulate it in a com-
parable structure by introducing an appropriate set of operators.

Lemma 23. For any ρ ∈ D(AB), it holds that

EWD,2(ρAB) = Dmin(ρAB∥WD(A : B)), (65)

with the set of Hermitian operators defined by

WD(A : B) :=
{
σ ∈ H (AB) : ∃Y ∈ H (AB), s.t. − Y ≤ σTB ≤ Y, ∥Y TB∥1 ≤ 1

}
. (66)

2 The original definition of EWD,1 imposes the condition ∥V TB
AB ∥1 = 1. However, it is equivalent to optimize over the

condition ∥V TB
AB ∥1 ≤ 1, as the optimal solution can always be chosen at the boundary.
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Proof. Using the Lagrangian method, we have the dual SDP of EWD,2 as

EWD,2(ρ) = − logmax TrΠρ(V − F )TB s.t.

V + F = (W −X)TB , Tr(W +X) ≤ 1, V, F,W,X ≥ 0. (67)

Let (V − F )TB = σ, V + F = Y . By the definition of Dmin and CWD, we have the desired
result. ⊓⊔

As discussed above, both SDP bounds EWD,1 and EWD,2 are essentially entanglement mea-
sures induced by the min-relative entropy. However, a significant limitation of these bounds is that
they vanish for any full-rank state.

Proposition 24. For any full rank state ρ ∈ D(AB), it holds

EWD,1(ρ) = EWD,2(ρ) = 0. (68)

Proof. If ρAB is full rank, then Πρ = IAB and thus

EWD,1(ρAB) = − logmax
{
TrσAB : σAB ≥ 0, ∥σTB

AB∥1 ≤ 1
}
. (69)

It is clear that for any feasible solution σAB it holds that TrσAB = TrσTB
AB ≤ ∥σTB

AB∥1 ≤ 1. On
the other hand, there is a feasible solution σAB = IAB/|AB| such that TrσAB = 1. Thus the
maximization is taken at TrσAB = 1 and thus EWD,1(ρAB) = 0. Similarly, given full rank ρAB ,
it holds

EWD,2(ρAB) = − logmax
{
TrσAB : σ, Y ∈ H (AB),−YAB ≤ σTB

AB ≤ YAB, ∥Y TB∥1 ≤ 1
}
.

(70)

Then for any feasible solutions σAB, YAB , it holds TrσAB = TrσTB
AB ≤ TrYAB = TrY TB

AB ≤
∥Y TB∥1 ≤ 1. On the other hand, considering the feasible solution σAB = YAB = IAB/|AB|, we
have TrσAB = 1. Thus the maximization is taken at TrσAB = 1 and EWD,2(ρAB) = 0. ⊓⊔

Recently, Wang et al. introduced the PPTk set [WJZ23] as

PPTk(A : B) :=
{
σ ∈ H+(AB) : Tr fk(σ) ≤ 1

}
, (71)

where f(σ) := |σTB | and k ∈ N+. Building on this set, the authors introduced an efficiently
computable lower bound for entanglement cost [WJZ23],

EC,LOCC(ρAB) ≥ EWJZ(ρAB) := DS,1/2(ρAB∥PPTk(A : B)). (72)

In the following, we show that PPTk satisfies Assumption 9 and thus we can apply our Theo-
rem 10 to get an improved bound.

Lemma 25. Let k ≥ 2. The PPTk set defined in Eq. (71) satisfies Assumption 9.

Proof. By the SDP duality, we have the support function

hPPTk
(ω) = inf

{
∥γTB

k ∥∞ : γ1 ≥ ω, −γi+1 ≤ γTB
i ≤ γi+1, ∀i ∈ {1, 2, · · · , k − 1}

}
. (73)

Then for any ω1, ω2, assume their optimal solutions in the dual program are respectively given
by Xi and Yi for all i ∈ {1, 2, · · · , k}. Then we have X1 ⊗ Y1 ≥ ω1 ⊗ ω2. Since −Xi+1 ≤
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XTB
i ≤ Xi+1 and −Yi+1 ≤ Y TB

i ≤ Yi+1, we have −I ≤ X
−1/2
i+1 XTB

i X
−1/2
i+1 ≤ I and

−I ≤ Y
−1/2
i+1 Y TB

i Y
−1/2
i+1 ≤ I where the inverses are taken on the supports. This gives −I ≤

X
−1/2
i+1 XTB

i X
−1/2
i+1 ⊗ Y

−1/2
i+1 Y TB

i Y
−1/2
i+1 ≤ I which is equivalent to −Xi+1 ⊗ Yi+1 ≤ XTB

i ⊗
Y TB
i ≤ −Xi+1⊗Yi+1. So {Xi⊗Yi}i is a feasible solution to the dual program of hPPTk

(ω1⊗ω2).
By the multiplicativity of the infinity norm under tensor product, we know that hPPTk

is sub-
multiplicative under tensor product. This proves that PPTk satisfies assumption (A.4) by Lemma 3.
The rest of assumptions can also be easily checked. ⊓⊔

Theorem 26. Let ρ ∈ D(AB) and k ≥ 2. Let (∗) = max {EWD,1(ρ), EWD,2(ρ), EWJZ(ρ)}
represent the previously known bounds. Then it holds

(∗) ≤ DM(ρ∥PPTk) ≤ D∞(ρ∥PPTk) ≤ D∞(ρ∥PPT) ≤ EC,LOCC(ρ). (74)

Moreover, DM(ρ∥PPTk) can be seen as the first level of approximation to D∞(ρ∥PPTk) and both
quantities can be efficiently estimated.

Proof. It has been shown that [WJZ23, Corollary 4],

PPT(A : B) ⊆ PPTk(A : B) ⊆ · · · ⊆ Rains(A : B). (75)

It is also clear from their definitions that PPT2(A : B) ⊆ WD(A : B). This implies

PPT(A : B) ⊆ PPTk(A : B) ⊆ · · ·PPT2(A : B) ⊆ WD(A : B) ∩ Rains(A : B). (76)

Therefore, the first two inequalities of the asserted result follow from the relation of divergences
in Lemma 7 and the relation of sets in Eq. (76). The second inequality follows from the superad-
ditivity in [FFF24, Lemma 22] and the asymptotic equivalence in [FFF24, Lemma 29]. The third
inequality follows from the relation in Eq. (76). The last equality is known from Eq. (63). The
computability of DM(ρ∥PPTk) and D∞(ρ∥PPTk) follows from Lemma 25 and Theorem 10. ⊓⊔

Following similar arguments in [WJZ23], we can also show that the new measures DM(ρ∥PPTk)
and D∞(ρ∥PPTk) satisfy the desired properties such as normalization, faithfulness and (super-)
additivity.

Besides the bounds mentioned, which are established on the PPT set, there is another effi-
ciently computable lower bound on EC,LOCC given by Lami and Regula in [LR23],

ELR(ρ) := log sup
{
TrXρ : ∥XTB∥∞ ≤ 1, ∥X∥∞ = Tr[Xρ]

}
. (77)

In the following, we compare our new bounds with previously established ones through sev-
eral examples, including Isotropic states and Werner states. To the best of our knowledge, the
entanglement costs for these states under LOCC operations remain unresolved. Additionally, we
use randomly generated quantum states to showcase the broad applicability and improvement of
our bound across unstructured quantum states. In all cases, our experiments clearly demonstrate
the superiority of our bound (even for the first level of approximation) over existing ones.

Example 1 (Isotropic states and Werner states.) The Isotropic state is defined by a convex mixture
of the maximally entangled state and its orthogonal complement,

ρI,p := p|Φ⟩⟨Φ|+ 1− p

d2 − 1
(I − |Φ⟩⟨Φ|), (78)
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where |Φ⟩ = 1√
d

∑e
i=1 |ii⟩ is the d-dimensional maximally entangled state. The PPT-relative

entropy of entanglement for ρI,p and its regularization are given by [Rai98, Theorem 7]

D∞(ρI,p∥PPT) = D(ρI,p∥PPT) =

0 if 0 ≤ p ≤ 1
d ,

log d+ p log p+ (1− p) log 1−p
d−1 if 1

d ≤ p ≤ 1.
(79)

The Werner state is defined by a convex mixture of the normalized projectors on the symmetric
(ρs) and anti-symmetric (ρa) subspaces,

ρW,p := (1− p)ρs + pρa =
1− p

d(d+ 1)
(I + S) +

p

d(d− 1)
(I − S), (80)

where S =
∑e

i,j=1 |ij⟩⟨ji| is the SWAP operator of dimension d. The regularized PPT-relative
entropy of entanglement for ρW,p is given by [AEJ+01]

D∞(ρW,p∥PPT) =


0, if 0 ≤ p ≤ 1

2 ,

1− h(p), if 1
2 < p ≤ d+2

2d ,

log d+2
d + (1− p) log d−2

d+2 , if p > d+2
2d .

(81)

Note that both the Isotropic states and the Werner states are full-rank states for any p ∈ (0, 1). As a
result, the previous bounds EWD,1 and EWD,2 reduce to zero, as shown in Proposition 24. We then
compare our new bound DM(ρ∥PPT2) with the previously established bounds EWJZ [WJZ23],
ELR [LR23] and the analytical bound D∞(ρ∥PPT) in Figure 2. It turns out that the first level of
approximation DM(ρ∥PPT2) already coincides with the analytical bound D∞(ρ∥PPT) for both
cases, improving the numerical bounds EWJZ and ELR.

Measured relative entropy: figures
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Figure 2: Comparison of the new lower bound DM(ρ∥PPT2) with previous bounds EWJZ [WJZ23],
ELR [LR23] and D∞(ρ∥PPT) [Rai98, AEJ+01] for (a) Isotropic states and (b) Werner states. The
horizontal axis is the state parameter p and the vertical axis is the value of the entanglement
measure.

Example 2 (Random quantum states.) Since DM(ρ∥PPT2) has been proved to be better than EWJZ
in general, we focus our comparison here with ELR [LR23] by generating random bipartite states
according to the Hilbert-Schmidt measure, with varying ranks. For each rank, we generate 500
quantum states of dimension 3 ⊗ 3. The comparison is presented in Figure 3. It is evident that
DM(ρ∥PPT2) outperforms ELR in most cases, particularly for higher-rank states.
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Measured relative entropy: figures
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Figure 3: Comparison of the new bound DM(ρ∥PPT2) with the previously known bound
ELR [LR23] for randomly generated quantum states with different ranks.

Similar to the entanglement cost for quantum states, the entanglement cost of a quantum chan-
nel, denoted by EC,LOCC(N ), represents the minimal rate at which entanglement (between the
sender and receiver) is required to simulate multiple copies of the channel, given the availability
of free classical communication. It is known that [BBCW13]

EC,LOCC(N ) ≥ sup
ρ∈D(AA′)

EC,LOCC(NA→B(ρAA′)), (82)

where system HA′ is isomorphic to system HA. Wang et al. introduced a lower bound for the
entanglement cost of a quantum channel in [WJZ23],

EC,LOCC(N ) ≥ EWJZ(N ) ≥ EWJZ(NA→B(ΦAA′)) (83)

where EWJZ(N ) := supρ∈D(AA′)EWJZ(NA→B(ρAA′)) and ΦAA′ is the maximally entangled
state. This lower bound has been used to demonstrate that the resource theory of entanglement is
irreversible for amplitude damping channels.

Specifically, the amplitude damping channel is defined by

Nad(ρ) = E0ρE
†
0 + E1ρE

†
1, (84)

with Kraus operators E0 = |0⟩⟨0|+√
1− γ|1⟩⟨1| and E1 =

√
γ|0⟩⟨1|. Its quantum capacity, i.e.,

the maximal rate at which entanglement can be generated from the channel, is known as [GF05]

Q(Nad) = max
p∈[0,1]

h2((1− γ)p)− h2(γp), (85)

where h2 is the binary entropy. It has been shown in [WJZ23] that for 0.25 ≲ γ < 1,

EC,LOCC(Nad) ≥ EWJZ(Nad(ΦAA′)) > Q(Nad), (86)
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Here, we can improve this bound by

EC,LOCC(Nad) ≥ DM(Nad(ΦAA′)∥PPT2) > Q(Nad) (87)

and show that the gap exists across the entire parameter region 0 < γ < 1 in Figure 4.
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Figure 4: Comparison of the new lower bound DM(Nad(ΦAA′)∥PPT2) with the previously known
bounds EWJZ [WJZ23], ELR [LR23] and the quantum capacity Q for amplitude damping channel.
The horizontal axis is the channel parameter γ and the vertical axis is the value of the entanglement
measure.

4.3 Quantum entanglement distillation

Entanglement distillation is an essential quantum information processing task in quantum net-
works that involves converting multiple copies of noisy entangled states into a smaller number
of Bell states. The distillable entanglement of a bipartite state ρAB , denoted by ED,Ω(ρAB),
represents the maximum number of Bell states that can be extracted from the given state with
asymptotically vanishing error under the operation class Ω. It has been established that the dis-
tillable entanglement under asymptotically non-entanglement generating operations, denoted by
ED,ANE, is given by the regularized relative entropy of entanglement [BP10],

ED,ANE(ρAB) = D∞(ρAB∥SEP) := lim
n→∞

1

n
D(ρ⊗n

AB∥SEP(An : Bn)) (88)

where SEP(A : B) denotes the set of all separable states between HA and HB . Evaluating this
quantity is hard in general, as it involves a limit as well as the separability problem, which is
known to be computationally hard [Gur03].

As D∞(ρAB∥SEP) is a minimization problem, any feasible solution gives an upper bound.
Here, we can derive an efficient lower bound for D∞(ρAB∥SEP) by relaxing SEP to the Rains
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set [Rai01, ADMVW02] 3

Rains(A : B) :=
{
σ ∈ H+(AB) : ∥σTB∥1 ≤ 1

}
. (89)

We can show that it satisfies Assumption 9. This is because we have, by the SDP duality, that

hRains(ω) = sup
σ∈Rains(A:B)

Tr[ωσ] = inf
γ≥ω

∥γTB∥∞, (90)

where ∥ · ∥∞ is the spectral norm. By the multiplicativity of ∥ · ∥∞ we can easily check that hRains
is sub-multiplicative under tensor product, which is equivalent to the polar assumption (A.4) by
Lemma 3. The rest of assumptions can also be easily verified.

Therefore, we have the relaxation

D∞(ρAB∥SEP) ≥ D∞(ρAB∥Rains), (91)

where the right-hand side known as the regularized Rains bound can be efficiently estimated using
Theorem 10 by considering An = {ρ⊗n} and Bn = Rains(An : Bn) which has efficient SDP
representations [FWTD19].

Remark 1 Similar to the regularized relative entropy of entanglement, the regularized Rains
bound has the operational meaning [RFWG19] that it is the distillable entanglement under Rains-
preserving operations ED,Rains, that is,

ED,Rains(ρAB) = D∞(ρAB∥Rains). (92)

This marks the first time that an operational regularized entanglement measure has been shown to
be efficiently computable, even when expressed as a regularized formula and beyond the zero-error
setting. Previous work in [LMR24] studied the zero-error entanglement cost under PPT operations
and proved that it is efficiently computable despite the absence of a closed-form formula.

As the Rains-preserving operations is a superset of LOCC operations, the regularized Rains
bound also gives an upper bound on the distillable entanglement under LOCC operations ED,LOCC,
that is,

ED,LOCC(ρAB) ≤ D∞(ρAB∥Rains) ≤ ED,ANE(ρAB) (93)

This improves the best known efficiently computable bound for ED,LOCC as well.

4.4 Magic state distillation

The above argument for entanglement distillation also applies to magic states, which is a key
resource for fault-tolerant quantum computing [BK05, VMGE14, FL20]. The task of magic state
distillation aims to extract as many copies of the target magic state as possible with asymptotically
vanishing error. The distillable magic is denoted by MD,Ω, where Ω represents the set of allowed
operations. Typically, the most natural choice of operations involves stabilizer operations, and
the corresponding distillable magic is denoted by MD,STAB. However, characterizing this set of
operations is challenging.

Motivated by the idea of the Rains bound from entanglement theory, Wang et al. [WWS20]
relaxed the set of all stabilizer states to a set of sub-normalized states with non-positive mana,
W(H) := {σ ∈ H+(H) : ∥σ∥W,1 ≤ 1}, where ∥ · ∥W,1 denotes the Wigner trace norm. Based on
the set W , Wang et al. introduced a magic measure D(ρ∥W), called thauma, and proved that it
serves as an upper bound for the distillable magic under stabilizer operations, that is,

MD,STAB(ρ) ≤ D(ρ∥W)c(T ), (94)

3 The set of PPT states does not satisfy Assumption 9, see discussion after Eq. (60).
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where c(T ) is a constant that depends on the target magic state T .
Here, we can verify that W satisfies our Assumption 9 and apply Theorem 10 to obtain an

improved bound through regularization while keeping the computational efficiency.
To see this, it is straightforward to show that the support function of W is given by

hW(ω) = sup
σ∈W

Tr[ωσ] = inf
γ≥ω

∥γ∥W,∞, (95)

where the ∥ · ∥W,∞ is the Wigner spectral norm and the second equality follows from the SDP
duality. Since ∥ · ∥W,∞ is multiplicative under tensor product, we can verify that the support
function hW is sub-multiplicative under tensor product as well. Hence, the polar set W◦ is closed
under tensor product by Lemma 3, and the remaining assumptions in Assumption 9 can also be
verified. Then, we can consider the regularization and get

MD,STAB(ρ) ≤ D∞(ρ∥W)c(T ), (96)

where D∞(ρ∥W) is the reguarlized thauma which remains efficiently computable by applying
Theorem 10 with An = {ρ⊗n} and Bn = W(H⊗n). This improves the best-known estimation of
magic state distillation under stablizer opeations.

5 Conclusion

We showed that regularized relative entropy between two sets of quantum states can be efficiently
computed using convex optimization. This result has broad implications for quantum information
theory, including the study of adversarial quantum channel discrimination, the estimation of the
entanglement cost of quantum states and channels, entanglement distillation under LOCC opera-
tions and magic state distillation under stabilizer operations. Numerical experiments demonstrated
that our new bounds outperform existing ones in various scenarios, even for the first level of ap-
proximation. Generally, our result can be applied by verifying the conditions of the relevant theory
and performing necessary relaxations when required. Therefore, we anticipate that this approach
has the potential for far-reaching applications beyond the specific cases discussed here.

Many problems remain open for future investigation. For example, while we have demon-
strated that regularized relative entropies can be efficiently computed using convex optimization
techniques, developing a more explicit algorithm and its implementation remains an area for fur-
ther exploration. Additionally, designing a general algorithm to construct the smallest superset of
a given set that satisfies the polar assumption presents an intriguing challenge. The solution of this
would extend the applicability of our results to broader areas.
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