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Abstract

The asymptotic equipartition property (AEP) states that in the limit of a large number of indepen-
dent and identically distributed (i.i.d.) random experiments, the output sequence is virtually certain
to come from the typical set, each member of which is almost equally likely. This property is a form
of the law of large numbers and lies at the heart of information theory.

In this work, we prove a generalized quantum AEP beyond the i.i.d. framework where the random
samples are drawn from two sets of quantum states. In particular, under suitable assumptions on the
sets, we prove that all operationally relevant divergences converge to the quantum relative entropy
between the sets. More specifically, both the quantum hypothesis testing relative entropy (a smoothed
form of the min-relative entropy) and the smoothed max-relative entropy approach the regularized
relative entropy between the sets. Notably, the asymptotic limit has explicit convergence guarantees
and can be efficiently estimated through convex optimization programs, despite the regularization,
provided that the sets have efficient descriptions.

As the first application, the generalized AEP directly implies a new generalized quantum Stein’s
lemma for conducting quantum hypothesis testing between two sets of quantum states. This ad-
dresses open questions raised by Brandão et al. [IEEE TIT 66(8):5037–5054, 2020] and Mosonyi et
al. [IEEE TIT 68(2):1032-1067, (2022)], which seek a Stein’s lemma with computational efficiency.
Moreover, we propose a new framework for quantum resource theory in which state transformations
are performed without requiring precise characterization of the states being manipulated, making it
more robust to imperfections. We demonstrate the reversibility (also referred to as the second law)
of such a theory and identify the regularized relative entropy as the “unique” measure of the resource
in this new framework.

As the second application, we introduce a quantum version of adversarial hypothesis testing,
which was first studied in the classical case by Brandão et al. [ITCS 2014], where the tester plays
against an adversary who possesses internal quantum memory and controls the quantum device. We
show that the optimal error exponent is precisely characterized by a new notion of quantum channel
divergence, named the minimum output channel divergence. Interestingly, by proving the chain rule
property of the minimum output channel divergence, we show that the adaptive strategies employed
by the adversary provide no advantage over non-adaptive ones.

As the third application, we derive a relative entropy accumulation theorem stating that the
smoothed min-relative entropy between two sequential processes of quantum channels can be lower
bounded by the sum of the regularized minimum output channel divergences. A special case of
this theorem gives a version of the Hmax entropy accumulation theorem established in Dupuis et al.
[CMP 379(3):867-913, 2020] and Metger et al. [FOCS 2022].

As the fourth application, we apply our generalized AEP to quantum resource theories and pro-
vide improved and efficient bounds for entanglement distillation, magic state distillation, and the
entanglement cost of quantum states and channels. These serve as illustrative examples to demon-
strate the general idea to leverage the computational efficiency of our results when the problem of
interest is hard to solve directly.
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Finally, we believe the technical tools established in this work — including the variational for-
mula, superadditivity for the measured relative entropy between two sets of states, the chain rule
property for the quantum relative entropy, and the minimum output channel divergence — will find
more applications in quantum information. In particular, we expect that the measured relative en-
tropy, which is at the heart of all the proofs in this work, will play a more prominent role in quantum
information.
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1 Introduction

The asymptotic equipartition property (AEP) is a form of the law of large numbers in information theory,
stating that − 1

n log p(X1, X2, · · · , Xn) is close to the entropy H(X), where X1, X2, · · · , Xn are inde-
pendent, identically distributed (i.i.d.) random variables and p(X1, X2, · · · , Xn) is the probability of
observing the sequence X1, X2, · · · , Xn [Cov99]. The AEP was first stated by Shannon in his seminal
1948 paper [Sha48], where he proved the result for i.i.d. processes and stated the result for staionary
ergodic processes. McMillan [McM53] and Breiman [Bre57] then proved the AEP for ergodic finite
alphabet sources. The result is now referred to as the AEP or the Shannon–McMillan–Breiman theorem.
This property lies in the heart of information theory, forming the mathematical foundation for applica-
tions such as data compression 1, channel coding [Sha48] and cryptography [HV93, VV95, Cac97].

The AEP can be represented in a more generic form in terms of entropic quantities:

lim
ε→0

lim
n→∞

1

n
Dε(P

⊗n∥Q⊗n) = D(P∥Q), (1)

where P is a probability distribution, Q is a nonnegative function on a finite set and D is a divergence
of interest, ε is a smoothing parameter and D is the Kullback–Leibler divergence also called the relative
entropy. For instance, considering Q to be a constant function equal to 1 and D be the min-relative
entropy and max-relative entropy, then the above equation reduce to the Shannon–McMillan–Breiman
theorem.

The AEP has been generalized to quantum information theory, by replacing the probability distribu-
tion with the density matrix of a quantum state and using quantum divergences,

lim
ε→0

lim
n→∞

1

n
Dε(ρ

⊗n∥σ⊗n) = D(ρ∥σ), (2)

where ρ is the density matrix, σ is a positive semidefinite operator. In particular, Hiai and Petz [HP91]
proved the case when Dε is the quantum hypothesis testing relative entropy and D is the Umegaki
relative entropy. Ogawa and Nagaoka [NO00] then strenghtened the result by removing the depen-
dence of ε in the outer limit. These together formed the well-known quantum Stein’s lemma in quan-
tum information theory. Tomamichel et al. [TCR09] proved the case when ρAB is a bipartite quantum
state and σAB = IA ⊗ ρB and Dε is the quantum min-relative entropy and quantum max-relative en-
tropy [Ren05]. As the classical AEP plays an essential role in classical information theory, the quantum
AEP has also found plenty of applications, including quantum data compression [Sch95], quantum state
merging [Ber09], quantum channel coding [DMHB13], quantum cryptography [Ren05] and quantum
resource theory [FWTD19].

For many problems, the situation is not so simple and ρ⊗n and σ⊗n are not fully known and do
not necessarily possess the i.i.d. structure. All one knows is that they belong to two sets, An and Bn,
respectively, making the existing quantum AEPs not applicable. Such as scenario has been extensively
studied in the classical information theory and applied to practical problems (refer to [LM02] and ref-
erences therein) such as classification with training sequences (e.g. speech recognition, signal detection
and digital communication) and detection of messages via unknown channels (e.g. radar target detection,
identification problem and watermark detection). This motivates us to explore a more general notion of
the quantum AEP by extending beyond the i.i.d. structure of the source and beyond the singleton case.
Specifically, we consider the following limit:

lim
n→∞

1

n
Dε(An∥Bn) = ? with Dε(An∥Bn) := inf

ρn∈An
σn∈Bn

Dε(ρn∥σn) (3)

where An is a set of quantum states and Bn is a set of positive semidefinite operators acting on H⊗n,
whereH is a finite-dimensional Hilbert space. This is a very general framework that encompasses almost

1 The AEP has been proved to be almost equivalent to the source coding theorem by [VH97], which reinforces the prominent
role played by the AEP in information theory.
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all existing studies of quantum AEP in the literature. For instance, if Dε is the hypothesis testing relative
entropy, then An is seen as a composite null hypothesis and Bn as a composite alternate hypothesis.
Specific examples that were recently studied include composite hypothesis testing where An and Bn are
convex mixtures of i.i.d. states [BBH21], as well as the generalized quantum Stein’s lemma, where An

is an i.i.d. state and Bn is a set of quantum states [BP10, HY24, Lam24].

1.1 Main contributions

Under some assumptions on the sets An and Bn, in particular the stability of the sets and their polars
under tensor products, we prove that the limit in Eq. (3) exists for both the hypothesis testing relative
entropy DH,ε (a smoothed form of the min-relative entropy) and the max-relative entropy Dmax,ε, which
represent two extreme cases in the family of quantum divergences. Both limits converge to the quantum
relative entropy between the sets. More specifically, we establish the following:

Theorem 1. (Generalized AEP, informal) Let {An}n∈N and {Bn}n∈N be two sequences of sets of states
such that each set is convex, compact, permutation invariant, and the sequences as well as their polar
sets are closed under tensor product. Then for any ε ∈ (0, 1), it holds

nD∞(A ∥B)−O(n2/3 log n) ≤ DH,ε(An∥Bn) ≤ nD∞(A ∥B) +O(n2/3 log n), (4)

nD∞(A ∥B)−O(n2/3 log n) ≤ Dmax,ε(An∥Bn)≤ nD∞(A ∥B) +O(n2/3 log n), (5)

where D∞(A ∥B) := limn→∞
1
nD(An∥Bn), which can be estimated with explicit convergence guar-

antees and can be efficiently computed given that Am and Bm have efficient descriptions.

A central ingredient to the proof of this result is the superadditivity of the measured relative entropy
between two sets of quantum states under the stability assumption of the polar set,

DM(Am+k∥Bm+k) ≥ DM(Am∥Bm) +DM(Ak∥Bk). (6)

Some remarks concerning the statement are in order:

• (Generality.) All assumptions, except for the one regarding polar sets, are standard in most exist-
ing literature (e.g., [BP10, BHLP20, HY24, Lam24]). The polar assumption, while technical, is
satisfied in many cases of interest. For instance, it holds when the set is a singleton of i.i.d. state,
as in the existing quantum AEP; when the set consists of the identity operator tensored with all
density operators, which is relevant for conditional quantum entropies; or when it is the image of a
quantum channel or a set of quantum channels, a scenario that naturally arises in quantum channel
discrimination.

• (Relaxation.) Even in cases where the polar assumption is not directly satisfied, we can relax the
original problem to meet the required conditions. This approach provides an efficient approxima-
tion to the original problem, which may be difficult to solve directly. We illustrate this approach
in the main text through applications in entanglement manipulation and magic state distillation
and anticipate that this approach has the potential for far-reaching applications beyond the specific
cases discussed here.

• (Efficiency.) The leading order in the generalized AEP is characterized by a regularized quantity,
which will be shown to be necessary in general through specific examples. However, the asymp-
totic limit comes with explicit convergence guarantees and can still be efficiently estimated via
convex optimization programs, despite the regularization, provided that An and Bn have efficient
descriptions.

• (Explicit finite n estimate.) Our generalized AEP has a leading term that is independent of ε,
corresponding to the strong converse property in information theory. Moreover, while the leading
order is characterized by a regularized quantity, we can still provide an explicit estimate for finite

4



n, making its convergence controllable in the finite block length regime. Even though the bound
we obtain on the second order term is O(n2/3 log n) instead of the usual O(

√
n), this is a rare case

where we can explicitly bound the convergence rate for a regularized quantity.

• (Divergences.) The results apply to the two extreme cases of quantum divergence; therefore, any
divergence that lies between the hypothesis testing relative entropy and the max-relative entropy,
or is equivalent to these, will yield a similar result.

On top of the generalized AEP, we provide several applications, including fundamental tasks such as
quantum state discrimination and quantum channel discrimination with the corresponding Stein’s lemma,
a relative entropy accumulation theorem with potential applications in quantum cryptography, and the
quantum resource theory of entanglement and magic, which are important for quantum networking and
fault-tolerant quantum computing.

Application 1: quantum hypothesis testing between two sets of states. Quantum hypothesis
testing is a pivotal concept in quantum information theory, forming the foundation for numerous appli-
cations, including quantum channel coding, quantum illumination, and the operational interpretation of
quantum divergences. A central task in hypothesis testing is to discriminate between quantum states
corresponding to the different hypotheses, with the goal of determining which state is actually provided.
In this work, we investigate quantum hypothesis testing between two sets of quantum states, An and
Bn. The fundamental difficulty in analyzing such a hypothesis testing is that both hypotheses are com-
posite and extend beyond the i.i.d. structure. We need to control the type-I error α(An,Mn) within a
constant threshold whenever the sample is drawn from An, in order to prevent the extremely bad case
from passing the test. The asymmetric setting then seeks to determine the optimal exponent at which
the type-II error probability decays β(Bn,Mn), known as the Stein’s exponent, while keeping the type-I
error within a fixed threshold ε. Specifically, the goal is to evaluate

βε(An∥Bn) := inf
0≤Mn≤I

{β(Bn,Mn) : α(An,Mn) ≤ ε} . (7)

Theorem 2. (Another generalized quantum Stein’s lemma, informal.) Given the same assumptions on
{An}n∈N and {Bn}n∈N as stated in Theorem 1. Then for any ε ∈ (0, 1), it holds

lim
n→∞

− 1

n
log βε(An∥Bn) = D∞(A ∥B). (8)

This result extends the renowned quantum Stein’s lemma to a more general setting. Notably, by
utilizing the generalized AEP in Theorem 26, the rate of convergence in our version of Stein’s lemma can
be explicitly determined, and the Stein’s exponent can be efficiently estimated via convex optimization
programs, despite the regularization involved, provided that An and Bn have efficient descriptions. This
addresses open questions raised of significant interest in the community, particularly those seeking a
Stein’s lemma with efficient estimation, as discussed in [BHLP20, Section 3.5] and [MSW22, Section
VI].

The discussion on the reduction to the classical case and the comparison with different variants of
the quantum Stein’s lemma is presented as follows:

• (Reduction to the classical case.) If {An}n∈N and {Bn}n∈N are classical probability distributions,
then the measured relative entropy coincides with the quantum relative entropy. In this case, we
can show that D(An∥Bn) is additive. Therefore, the Stein’s exponent D∞(A ∥B) can be replaced
by the one-shot quantity D(A1∥B1) without regularization.

• (Quantum Stein’s lemma.) Let An = {ρ⊗n} and Bn = {σ⊗n} be two singletons. Then it is easy
to check that these sets satisfy all the required assumptions. Therefore, our generalized quantum
Stein’s lemma covers the quantum Stein’s lemma [HP91, NO00] as a special case.
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• (Generalized quantum Stein’s lemma.) Theorem 2 is incomparable to the generalized quantum
Stein lemma of [BP10, HY24, Lam24]. It is weaker in the sense that we have the additional
assumption on the stability of the polar sets under tensor product for the alternate hypothesis Bn,
but it is stronger in two ways: it allows for a composite null hypothesis An whereas the results
of [BP10, HY24, Lam24] are restricted to An = {ρ⊗n}, and in addition we can obtain efficient
and controlled approximations of the Stein exponent as presented in Theorem 1.

• (Composite quantum Stein’s lemma.) The composite quantum hypothesis testing studied in [BBH21,
MSW22] does not satisfy the stability assumption of the sets. Therefore, it is not comparable to
our result or the previous generalized quantum Stein’s lemma [BP10, HY24, Lam24].

• (Quantum Stein’s lemma for restricted measurements.) In [BHLP20, Theorem 16], the authors
proved a quantum Stein’s lemma for restricted measurements, assuming that the measurements
and the set of quantum states are compatible [Pia09]. In this work, we do not impose constraints
on the performed measurements. As a result, the measurements and the set of quantum states in our
result may not be compatible in their context, making our result not directly comparable to theirs.
It is also worth noting that our Stein’s lemma possesses the strong converse property (i.e., its con-
vergence is independent of ε), whereas the Stein’s lemma for restricted measurements [BHLP20,
Theorem 16] only exhibits a weak converse property (i.e., it requires taking ε→ 0).

As the existing generalized quantum Stein’s lemma is deeply connected to the second law of quantum
resource theory, we propose a new framework for quantum resource theory in which state transformations
are performed without requiring precise characterization of the states being manipulated, making it more
robust to imperfections. We demonstrate that such a theory is reversible under asymptotically resource
non-generating operations, identifying the regularized quantum relative entropy between two sets as the
“unique” measure of resource in this new framework.

Application 2: adversarial quantum channel discrimination. Consider a scenario in which a
tester is working with an untrusted quantum device that generates a quantum state upon request. This
device guarantees that the state is produced by either the quantum channelN (the bad case) or the quan-
tum channel M (the good case). The tester is permitted to request multiple samples from the device
and perform measurements to determine which channel is being used. However, because the device is
untrusted, it may have access to the environmental system of the channel and also possess an internal
memory that correlates with the generated samples, actively misleading the tester and undermining their
ability to correctly identify the channel. The key question here is: How effectively can the tester dis-
tinguish between the good and bad cases while playing against the adversary? Such a setting has been
studied by [BHLP20] in the classical case. In this work, we investigate the fully quantum setting.

Let An and Bn be the sets of quantum states generated by any adaptive strategies from the adversary.
Similar to quantum state discrimination, we denote βε(An∥Bn) as the optimal type-II error probability
when the type-I error is within a constant threshold ε. We will show that the optimal exponent at which
βε(An∥Bn) decays is given by a new notion of quantum channel divergence, which we call the minimum
output channel divergence, defined as

Dinf(N∥M) := inf
ρ∈D(A)
σ∈D(A)

D(NA→B(ρA)∥MA→B(σA)), (9)

where D is the set of all density matrices.

Theorem 3. (Adversarial quantum Stein’s lemma, informal.) Let N andM be two quantum channels
to distinguish. Then for any ε ∈ (0, 1), it holds

lim
n→∞

− 1

n
log βε(An∥Bn) = Dinf,∞(N∥M), (10)

where Dinf,∞(N∥M) := limn→∞
1
nD

inf(N⊗n∥M⊗n) and it can be efficiently approximated via a
convex program. Moreover, the optimal exponent can be achieved by non-adaptive strategies, indicating
that adaptive strategies by the adversary offer no advantage over non-adaptive ones.
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The key ingredient of its proof is a new chain rule property for the quantum relative entropy, which
lower bounds the entropy of a large system into the sum of the entropies of its individual subsystems:

D(NA→B(ρRA)∥MA→B(σRA)) ≥ D(ρR∥σR) +Dinf,∞(N∥M). (11)

This provides the first quantum analog of the chain rule for Kullback–Leibler divergence in the lower
bound direction, complementing the chain rule for quantum relative entropy that establishes an upper
bound on the entropy of a global system in the previous work [FFRS20].

Application 3: a relative entropy accumulation theorem. The entropy accumulation theorem is a
technique to find bounds on the operationally relevant uncertainty present in the outputs of a sequential
process as a sum of the worst case uncertainties of each step [DFR20]. More specifically, a variant for
the max-entropy Hε

max states that for channels Ni ∈ CPTP(Ri−1 : RiBiCi), we have

Hε
max(B1 . . . Bn|C1 . . . Cn)Nn◦···◦N1(ρR0

) ≤
n∑

i=1

sup
ωRi−1

H(Bi|Ci)Ni(ω) +O(
√
n), (12)

where Hε
max(B|C)ρ ≈ − infσB∈D DH,ε(ρAB∥idA⊗σB)

2 and H(A|B)ρ = − infσB D(ρAB∥idA⊗σB).
This version can be found in [MFSR22]. It is natural to ask whether such a statement can be generalized
to divergences between arbitrary sequential processes of channels, and not only ones corresponding to
entropies. This was first asked as an open question in [MFSR22] for Dmax,ε. Here we establish such a
theorem for DH,ε.

Theorem 4. (Relative entropy accumulation, informal.) Consider quantum operationsNi ∈ CPTP(Ri−1 :

RiAi),Mi ∈ CP(Ri−1 : RiAi) and states ρR0 , σR0 . Let ε ∈ (0, 1), then

DH,ε

(
TrRn ◦

n∏
i=1

Ni(ρR0)

∥∥∥∥TrRn ◦
n∏

i=1

Mi(σR0)

)

≥
n∑

i=1

Dinf,∞(TrRi ◦Ni∥TrRi ◦Mi)−O(n2/3 log n). (13)

Our proof makes important use of the measured relative entropy, in particular to establish a chain rule
analogous to (11). We leave it as an open question for future work whether this new proof technique can
lead to better entropy accumulation theorems. Note that a dual relative entropy accumulation theorem
that proves upper bounds on Dmax,ε is unknown.

Application 4: efficient bounds for quantum resource theory. The generalized quantum Stein’s
lemma [BP10, HY24, Lam24] has found broad applications in quantum resource theory. However, the
optimal Stein exponents derived in these works are often challenging to compute, limiting their practical
utility. In contrast, our new generalized Stein’s lemma, presented in Theorem 2, offers computational
efficiency. To leverage this advantage, even when the task of interest does not directly satisfy all the
required assumptions, one can follow a general methodology of relaxing the set of interest to one that
does, particularly regarding the polar assumption. For example, in entanglement theory, the set of sepa-
rable states can be relaxed to the Rains set, which then satisfies all necessary assumptions. Similarly, in
fault-tolerant quantum computing, the set of stabilizer states can be relaxed to the set of states with non-
positive mana, which also fulfills all the required conditions. This helps to establish efficient benchmarks
to the task of interest and improve the existing bounds. We apply this general methodology to quantum
resource theories and provide improved and efficient bounds for entanglement distillation, magic state
distillation, and the entanglement cost of quantum states and channels.

2 The exact definition is not in terms of DH,ε but a closely related smoothed version of DS,1/2.
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1.2 Organization

The organization of the remaining content is as follows. In Section 2, we introduce necessary notations
and preliminary results on convex optimization and quantum divergences that will be used throughout
this work. In Section 3, we present the variational formula and superadditivity of the measured relative
entropy between two sets of quantum states, which serve as the main technical tools for proving our
main results. In Section 4, we present our main result on the generalized AEP and its formal proof.
In Section 5, we derive another generalized quantum Stein’s lemma by applying the generalized AEP,
and introduce a new framework of quantum resource theory and prove its reversibility. In Section 6, we
introduce the adversarial quantum channel discrimination and present its corresponding Stein’s lemma
via the minimun output channel divergence. In Section 7, we establish a relative entropy accumulation
theorem. In Section 8, we present efficient bounds for quantum resource theory by relaxing the originally
hard problem to the one that fits our framework. In Section 9, we give a conclusion of this work,
discussing the significance of this work and some open problem for further study.

2 Preliminaries

2.1 Notations

In this section we set the notations and define several quantities that will be used throughout this work.
Some frequently used notations are summarized in Table 1. Note that we label different physical systems
by capital Latin letters and use these labels as subscripts to guide the reader by indicating which system
a mathematical object belongs to. We drop the subscripts when they are evident in the context of an
expression (or if we are not talking about a specific system).

Notations Descriptions
HA Hilbert space on system A

|A| Dimension ofHA

L (A) Linear operators onHA

H (A) Hermitian operators onHA

H+(A) Positive semidefinite operators onHA

H++(A) Positive definite operators onHA

D(A) Density matrices onHA

A ,B,C Set of linear operators
C ◦ Polar set C ◦ := {X : Tr[XY ] ≤ 1, ∀Y ∈ C } of C

C ◦
+ Polar set restricted to positive semidefinite cone C ◦ ∩H+

C ◦
++ Polar set restricted to positive definite operators C ◦ ∩H++

CPTP Completely positive and trace preserving maps
CP Completely positive maps
log(x) Logarithm of x in base two

Table 1: Overview of notational conventions.

2.2 Polar set and support function

In the following, we introduce the definitions of the polar set and support function, along with some
fundamental results that will be used in our discussions.

Definition 5. Let C be a convex set. Then its polar set is defined by

C ◦ := {X : Tr[XY ] ≤ 1,∀Y ∈ C }. (14)

8



Let C ◦
+ := C ◦ ∩H+ and C ◦

++ := C ◦ ∩H++ be the intersections with positive semidefinite operators
and positive definite operators, respectively. The support function of C at ω is defined by

hC (ω) := sup
σ∈C

Tr[ωσ]. (15)

It is clear from the definitions that ω ∈ C ◦ if and only if hC (ω) ≤ 1. The support function is defined
as a convex program. Its dual program can be written as follows.

Lemma 6. Let C ⊆H+ be a convex set and ω ∈H+. Then hC (ω) = inf{t > 0 : ω ∈ tC ◦
+}.

Proof. We start from “≥” direction. Let s > hC (ω) ≥ 0. We have hC (ω/s) = hC (ω)/s < 1. So
ω/s ∈ C ◦

+ and therefore ω ∈ sC ◦
+ . This implies that s is a feasible solution for inf{t > 0 : ω ∈ tC ◦

+ },
and we get s ≥ inf{t > 0 : ω ∈ tC ◦

+ }. As this holds for any s > hC (ω), we get hC (ω) ≥ inf{t > 0 :

ω ∈ tC ◦
+ }. Now we prove the “≤” direction. Let z be any feasible solution to inf{t > 0 : ω ∈ tC ◦

+ }.
We have ω = zX with X ∈ C ◦

+ . Then hC (ω) = zhC (X) ≤ z because X ∈ C ◦
+ implies hC (X) ≤ 1.

As this holds for any feasible solution z, we have hC (ω) ≤ inf{t > 0 : ω ∈ tC ◦
+ }. ⊓⊔

Definition 7. Let H1 and H2 be finite-dimensional Hilbert spaces. Consider three sets A1 ⊆ H+(H1),
A2 ⊆H+(H2), and A12 ⊆H+(H1 ⊗H2). We call {A1,A2,A12} is closed under tensor product if for
any X1 ∈ A1, X2 ∈ A2, we have X1 ⊗X2 ∈ A12. In short, we write A1 ⊗A2 ⊆ A12.

The following lemma provides an equivalent condition for determining if the polar sets of interest
are closed under tensor product, which can be easier to validate for specific examples.

Lemma 8. Let H1 and H2 be finite-dimensional Hilbert spaces. Consider three sets A1 ⊆ H+(H1),
A2 ⊆H+(H2), and A12 ⊆H+(H1⊗H2). Their polar sets are closed under tensor product if and only
if their support functions are sub-multiplicative. That is,

(A1)
◦
+ ⊗ (A2)

◦
+ ⊆ (A12)

◦
+ ⇐⇒ hA12(X1 ⊗X2) ≤ hA1(X1)hA2(X2), ∀Xi ∈H+(Hi). (16)

Proof. We start from “⇒” direction. Consider any X1 ∈H+(H1), X2 ∈H+(H2). Let t1 and t2 be any
feasible solutions of the dual programs in Lemma 6 for hA1(X1) and hA2(X2), respectively. Then we
have X1 ∈ t1(A1)

◦
+ and X2 ∈ t2(A2)

◦
+. This implies X1 ⊗X2 ∈ t1t2(A1)

◦
+ ⊗ (A2)

◦
+ ⊆ t1t2(A12)

◦
+ and

therefore t1t2 is also a feasible solution for the dual program of hA12(X1 ⊗X2). So hA12(X1 ⊗X2) ≤
t1t2. As this holds for any feasible solutions t1, t2, we have hA12(X1 ⊗X2) ≤ hA1(X1)hA2(X2). Now
we prove the “⇐” direction. For any Y1 ∈ (A1)

◦
+ and Y2 ∈ (A2)

◦
+, we have 0 ≤ hA1(Y1) ≤ 1 and

0 ≤ hA2(Y2) ≤ 1. This implies that hA12(Y1 ⊗ Y2) ≤ 1 and therefore, Y1 ⊗ Y2 ∈ (A12)
◦
+. This shows

(A1)
◦
+ ⊗ (A2)

◦
+ ⊆ (A12)

◦
+. ⊓⊔

2.3 Quantum divergences

A functional D : D ×H+ → R is a quantum divergence if it satisfies the data-processing inequality
D(E(ρ)∥E(σ)) ≤ D(ρ∥σ) for any CPTP map E and (ρ, σ) ∈ D × H+. In the following, we will
introduce several quantum divergences and their fundamental properties, which will be used throughout
this work. Additionally, we will define quantum divergences between two sets of quantum states, which
will be the main quantity of interest in this work.

Definition 9. (Petz Rényi divergence [Pet86].) Let α ∈ (0, 1) ∪ (1,+∞). For any ρ ∈ D and σ ∈ H+,
the Petz Rényi divergence is defined by

DP,α(ρ∥σ) :=
1

α− 1
log Tr

[
ρασ1−α

]
, (17)

if supp(ρ) ⊆ supp(σ), and +∞ otherwise.
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Definition 10. (Sandwiched Rényi divergence [MLDS+13, WWY14].) Let α ∈ (0, 1) ∪ (1,+∞). For
any ρ ∈ D and σ ∈H+, the sandwiched Rényi divergence is defined by

DS,α(ρ∥σ) :=
1

α− 1
log Tr

[
σ

1−α
2α ρσ

1−α
2α

]α
, (18)

if supp(ρ) ⊆ supp(σ), and +∞ otherwise.

Definition 11. (Umegaki relative entropy [Ume54].) For any ρ ∈ D and σ ∈H+, the Umegaki relative
entropy is defined by

D(ρ∥σ) := Tr[ρ(log ρ− log σ)], (19)

if supp(ρ) ⊆ supp(σ) and +∞ otherwise.

When α→ 1, both DP,α and DS,α converge to the Umegaki relative entropy [MLDS+13, WWY14],

lim
α→1

DP,α(ρ∥σ) = lim
α→1

DS,α(ρ∥σ) = D(ρ∥σ). (20)

When α → 0+, the Petz Rényi divergence converges to the min-relative entropy or the Petz Rényi
divergence of order 0,

lim
α→0+

DP,α(ρ∥σ) = Dmin(ρ∥σ) = DP,0(ρ∥σ) := − log Tr[Πρσ], (21)

with Πρ the projection on the support of ρ. When α→∞, the sandwiched Rényi divergence converges
to the max-relative entropy [Dat09, Ren05],

lim
α→∞

DS,α(ρ∥σ) = Dmax(ρ∥σ) := log inf
{
t ∈ R : ρ ≤ tσ

}
, (22)

if supp(ρ) ⊆ supp(σ) and +∞ otherwise. Let F (ρ, σ) := ∥√ρ√σ∥1 +
√

(1− Tr ρ)(1− Trσ) be the
generalized fidelity and P (ρ, σ) :=

√
1− F 2(ρ, σ) be the purified distance. Let ε ∈ (0, 1). Then the

smoothed max-relative entropy is defined by

Dmax,ε(ρ∥σ) := inf
ρ′:P (ρ′,ρ)≤ε

Dmax(ρ
′∥σ), (23)

where the infimum is taken over all subnormalized states that are ε-close to the state ρ.

Definition 12. (Hypothesis testing relative entropy.) Let ε ∈ [0, 1]. For any ρ ∈ D and σ ∈ H+, the
quantum hypothesis testing relative entropy is defined by DH,ε(ρ∥σ) := − log βε(ρ∥σ) where

βε(ρ∥σ) := min
0≤M≤I

{Tr[σM ] : Tr[ρ(I −M)] ≤ ε} . (24)

The following lemma combines [CMW16, Lemma 5] and [QWW18, Proposition 3].

Lemma 13. Let α ∈ (0, 1), α′ ∈ (1,+∞) and ε ∈ (0, 1). For any ρ ∈ D and σ ∈H+, it holds

DP,α(ρ∥σ) +
α

α− 1
log

1

ε
≤ DH,ε(ρ∥σ) ≤ DS,α′(ρ∥σ) + α′

α′ − 1
log

1

1− ε
. (25)

Definition 14. (Measured relative entropy [Don86, HP91].) For any ρ ∈ D and σ ∈H+, the measured
relative entropy is defined by

DM(ρ∥σ) := sup
(X ,M)

D(Pρ,M∥Pσ,M ), (26)

where D is the Kullback–Leibler divergence and the optimization is over finite sets X and positive
operator valued measures M on X such that Mx ≥ 0 and

∑
x∈X Mx = I , Pρ,M is a measure on X

defined via the relation Pρ,M (x) = Tr[Mxρ] for any x ∈ X .
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A variational expression for DM is given by [BFT17, Lemma 1],

DM(ρ∥σ) = sup
ω∈H++

Tr[ρ logω] + 1− Tr[σω]. (27)

Definition 15. (Measured Rényi divergence [BFT17].) Let α ∈ (0, 1) ∪ (1,∞). For any ρ ∈ D and
σ ∈H+, the measured Rényi divergence is defined as

DM,α(ρ∥σ) := sup
(X ,M)

Dα(Pρ,M∥Pσ,M ), (28)

where Dα is the classical Rényi divergence.

A variational expression for DM,α is given by [BFT17, Lemma 3],

DM,α(ρ∥σ) =
1

α− 1
log


inf

W∈H++
αTr[ρW ] + (1− α) Tr

[
σW

α
α−1

]
, if α ∈ (0, 1/2),

inf
W∈H++

αTr
[
ρW

α−1
α

]
+ (1− α) Tr[σW ], if α ∈ [1/2, 1),

sup
W∈H++

αTr
[
ρW

α−1
α

]
+ (1− α) Tr[σW ], if α ∈ (1,∞).

(29)

When α → 1, the measured Rényi divergence converges to the measured relative entropy. It is known
that [RSB24, Lemma 2] DM,α is jointly convex for α ∈ (0, 1] and jointly quasi-convex for α ∈ (1,∞).
For any E ∈ CPTP and α > 0, the data-processing inequality holds [RSB24, Lemma 5]

DM,α(E(ρ)∥E(σ)) ≤ DM,α(ρ∥σ). (30)

The following result shows the ordering relation among different relative entropies.

Lemma 16. Let α ∈ [1/2, 1). For any ρ ∈ D and σ ∈H+,

Dmin(ρ∥σ) ≤ DM,α(ρ∥σ) ≤ DM(ρ∥σ) ≤ D(ρ∥σ). (31)

Proof. The last two inequalities follow from the monotonicity in α of the classical Rényi divergences
and the data processing inequality for D. As DM,α is monotone increasing in α, it remains to show the
first inequality for α = 1

2 . By the variational formula in [BFT17, Eq. (21)], we have

DM,1/2(ρ∥σ) = − log inf
ω∈H++

Tr[ρω−1] Tr[σω], (32)

which is the same as the Alberti’s theorem for quantum fidelity (see e.g. [Wat18, Corollary 3.20]).
Consider a feasible solution ωε = Πρ + ε(I − Πρ) ∈ H++ with ε > 0. It gives DM,1/2(ρ∥σ) ≥
− log Tr[ρω−1

ε ] Tr[σωε]. Since ρ has trace one, it gives Tr[ρω−1
ε ] = Tr[ρ] = 1. Then we have

DM,1/2(ρ∥σ) ≥ − log Tr[σωε] = − log[(1− ε) TrΠρσ + ε]. (33)

As the above holds for any ε > 0, we take ε→ 0+ and get DM,1/2(ρ∥σ) ≥ − log Tr[Πρσ] = Dmin(ρ∥σ),
which completes the proof. ⊓⊔

Lemma 17. Let α ∈ [1/2,∞). For any ρ ∈ D and σ ∈H+, it hold

DM,α(ρ∥σ) ≤ DS,α(ρ∥σ) ≤ DM,α(ρ∥σ) + 2 log |spec(σ)|, (34)

where |spec(σ)| is the number of mutually different eigenvalues of σ.
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Proof. The first inequality is given by [BFT17, Theorem 6]. Now we prove the second inequality. Let
Pσ be a pinching map with respect to σ. Then we have

DS,α(ρ∥σ) ≤ DS,α(Pσ(ρ)∥σ) + 2 log |spec(σ)| (35)

= DM,α(Pσ(ρ)∥σ) + 2 log |spec(σ)| (36)

= DM,α(Pσ(ρ)∥Pσ(σ)) + 2 log |spec(σ)| (37)

≤ DM,α(ρ∥σ) + 2 log |spec(σ)| (38)

where the first line follows from [HT16, Lemma 3], the second line follows because Pσ(ρ) and σ com-
mute and therefore DS,α(Pσ(ρ)∥σ) = DM,α(Pσ(ρ)∥σ), the third line follows by Pσ(σ) = σ and the last
line follows from the data processing inequality. ⊓⊔

Lemma 18. Let X be a permutation-invarant operator on L (A⊗n) with |A| = d. Then |spec(X)| ≤
(n+ 1)d(n+ d)d

2
= poly(n)[FF21b, Lemma A.1].

In this work, we will focus on the study of quantum divergences between two sets of quantum states.

Definition 19. (Quantum divergence between two sets of states.) Let D be a quantum divergence between
two quantum states. Then for any sets A ⊆ D and B ⊆ H+, the quantum divergence between these
two sets of quantum states is defined by

D(A ∥B) := inf
ρ∈A
σ∈B

D(ρ∥σ). (39)

Note that if D is lower semicontinuous (which is true for most quantum divergences of interest),
and A and B are compact sets, the infimum in the above expression is always attained and can thus
be replaced by a minimization [KZ05, Theorem 7.3.1]. From a geometric perspective, this quantity
characterizes the distance between two sets A and B under the “distance metric” D. In particular, if
A = {ρ} is a singleton, we write D(ρ∥B) := D({ρ}∥B). For two sequences of sets {An}n∈N and
{Bn}n∈N, the regularized divergence is defined by

D∞(A ∥B) := lim
n→∞

1

n
D(An∥Bn), (40)

whenever the limit on the right-hand side exists.

3 Variational formula and superadditivity

Unlike other quantum relative entropies, which are defined by closed-form expressions, the measured
relative entropy requires maximization over all possible quantum measurements, making it inherently
challenging to compute. This complexity is compounded in the case of divergences between different
sets of quantum states, where additional layers of optimization transform it into a minimax problem. The
following results address this issue by providing variational formulas for DM(A ∥B) and DM,α(A ∥B),
reformulating them as more tractable convex optimization programs. Based on these variational formu-
las, we establish their superadditivity, which serves as a key technical tool for the main results of this
work in the subsequent sections.

Lemma 20. Let A ⊆ D and B ⊆H+ be two compact convex sets. Then it holds

DM(A ∥B) = sup
W∈B◦

++

−hA (− logW ), (41)

where the objective function on the right-hand side is concave in W .
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Proof. By the variational formula of the measured relative entropy in Eq. (27), we have

DM(A ∥B) = inf
ρ∈A
σ∈B

sup
W∈H++

Tr[ρ logW ] + 1− Tr[σW ]. (42)

Note that all A ,B,H++ are convex sets, with A ,B being compact. Moreover, the objective function
is linear in (ρ, σ) and concave in W . So we can apply Sion’s minimax theorem [Sio58, Corollary 3.3] to
exchange the infimum and supremum and get

DM(A ∥B) = sup
W∈H++

inf
ρ∈A
σ∈B

Tr[ρ logW ] + 1− Tr[σW ] (43)

= sup
W∈H++

inf
ρ∈A

Tr[ρ logW ] + 1− sup
σ∈B

Tr[σW ]. (44)

By using the definition of the support function, we have

DM(A ∥B) = sup
W∈H++

−hA (− logW ) + 1− hB(W ). (45)

Next, we aim to simplify the objective function by moving the term 1 − hB(W ) into the constraint.
For this, let W be a feasible solution in the above optimization and define W̃ = W/hB(W ). Then
hB(W̃ ) = 1 and we will see that W̃ achieves an objective value no smaller than W . Indeed

−hA (− log W̃ ) = −hA (− logW )− log hB(W ) ≥ −hA (− logW ) + 1− hB(W ) (46)

where the inequality follows from the fact that log x ≤ x− 1. Therefore, we can reformulate

DM(A ∥B) = sup
W∈H++
hB(W )=1

−hA (− logW ). (47)

Using the same argument as above, we can relax the condition hB(W ) = 1 to hB(W ) ≤ 1 and get

DM(A ∥B) = sup
W∈H++
hB(W )≤1

−hA (− logW ). (48)

Finally, noting that hB(W ) ≤ 1 if and only if W ∈ B◦, we have the expression in Eq. (41). Let f(W ) :=
−hA (− logW ) = infρ∈A Tr[ρ logW ] be the objective function. Consider any convex combination
λW1 + (1− λ)W2 with λ ∈ (0, 1). We have

f(λW1 + (1− λ)W2) = inf
ρ∈A

Tr[ρ log(λW1 + (1− λ)W2)] (49)

≥ inf
ρ∈A

λTr[ρ logW1] + (1− λ) Tr[ρ logW2] (50)

≥ λ inf
ρ∈A

Tr[ρ logW1] + (1− λ) inf
ρ∈A

Tr[ρ logW2] (51)

= λf(W1) + (1− λ)f(W2) (52)

where the second line follows from the operator concavity of logarithm and the third line follows by
putting infimum to both parts. This proves the concavity of the objective function. ⊓⊔

Following the same argument, we can show the variational formula for the measured Rényi diver-
gence between two sets of quantum states. We present the result for α ∈ [1/2, 1) and the cases with
other parameters are given in Appendix A.
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Lemma 21. Let α ∈ [1/2, 1). Let A ⊆ D and B ⊆H+ be two compact convex sets. Then it holds

DM,α(A ∥B) =
α

α− 1
log inf

W,V

{
hA (V ) : W ∈ B◦

++, W
1− 1

α ≤ V
}
, (53)

where the right-hand side is a convex program.

Proof. For any fixed ρ ∈ A and σ ∈ B, we have by Eq. (29) that

QM,α(ρ∥σ) := inf
W∈H++

αTr
[
ρW 1− 1

α

]
+ (1− α) Tr[σW ] (54)

= inf
W∈H++

W 1− 1
α≤V

αTr [ρV ] + (1− α) Tr[σW ], (55)

where the second equality follows by introducing an additional variable V . Then we have

sup
ρ∈A
σ∈B

QM
α (ρ∥σ) = sup

ρ∈A
σ∈B

inf
W∈H++

W 1− 1
α≤V

αTr [ρV ] + (1− α) Tr[σW ]. (56)

Note that all A ,B and {(W,V ) : W ∈H++,W
1− 1

α ≤ V } are convex sets, with A ,B being compact.
Moreover, the objective function is linear in (ρ, σ), and also linear in (W,V ). So we can apply Sion’s
minimax theorem [Sio58, Corollary 3.3] to exchange the infimum and supremum and get

sup
ρ∈A
σ∈B

QM
α (ρ∥σ)= inf

W∈H++
W 1− 1

α≤V

sup
ρ∈A
σ∈B

αTr [ρV ] + (1− α) Tr[σW ] (57)

= inf
W∈H++

W 1− 1
α≤V

α sup
ρ∈A

Tr [ρV ] + (1− α) sup
σ∈B

Tr[σW ]. (58)

By using the definition of the support function, we have

sup
ρ∈A
σ∈B

QM
α (ρ∥σ) = inf

W∈H++
W 1− 1

α≤V

αhA (V ) + (1− α)hB(W ) (59)

= inf
W∈H++

W 1− 1
α≤V

hA (V )αhB(W )1−α, (60)

where the second line follows from the weighed arithmetic-geometric mean inequality αx + (1 −
α)y ≤ xαy1−α (with equality if and only if x = y) and the fact that (W,V ) is a feasible solu-
tion implies (kW, k1−1/αV ) is also a feasible solution for any k ≥ 0. Therefore, we can choose
k = (hA (V ))α(hB(W ))−α, which implies hA (k1−1/αV ) = hB(kW ) and therefore the equality of
the weighed arithmetic-geometric mean is achieved. Similarly, for any feasible solution (W,V ) we can
always construct a new solution (W/hB(W ), V hB(W )1/α−1) achieves the same objective value. This
implies

sup
ρ∈A
σ∈B

QM
α (ρ∥σ) = inf

W∈H++
W 1− 1

α≤V
hB(W )=1

(hA (V ))α = inf
W∈H++

W 1− 1
α≤V

hB(W )≤1

(hA (V ))α, (61)

where the second equality follows by the same reasoning. Finally, noting that hB(W ) ≤ 1 if and only if
W ∈ B◦, we have the asserted result in Eq. (53). It is easy to check that the objective function hA (V )
is convex in V and the feasible set is also a convex set. ⊓⊔
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The variational formula helps establish the following superadditivity of the divergence between two
sets of quantum states, which serves as a key technical tool for the applications discussed in the subse-
quent sections.

Lemma 22. Let α ∈ [1/2, 1) and H1,H2 be finite-dimensional Hilbert spaces. Consider convex and
compact sets A1 ⊆ D(H1), A2 ⊆ D(H2), and A12 ⊆ D(H1 ⊗ H2) and also B1 ⊆ H+(H1), B2 ⊆
H+(H2), and B12 ⊆ H+(H1 ⊗ H2). Assume that (A1)

◦
+ ⊗ (A2)

◦
+ ⊆ (A12)

◦
+ and (B1)

◦
+ ⊗ (B2)

◦
+ ⊆

(B12)
◦
+. Then,

DM,α(A12∥B12) ≥ DM,α(A1∥B1) +DM,α(A2∥B2). (62)

Proof. Consider the convex program in Lemma 21 for DM,α(A1∥B1) and DM,α(A2∥B2). Let (W1, V1)
and (W2, V2) be any feasible solutions for these programs, respectively. Then we will see that (W1 ⊗
W2, V1 ⊗ V2) is also a feasible solution for DM,α(A12∥B12) with a higher objective value. To see this,
it is clear that W1 ∈ (B1)

◦
+ and W2 ∈ (B2)

◦
+ implies that W1 ⊗W2 ∈ (B12)

◦
+ by the assumption of

(B1)
◦
+ ⊗ (B2)

◦
+ ⊆ (B12)

◦
+. Then by the multiplicativity of the power function, we have

(W1 ⊗W2)
α−1
α = (W1)

α−1
α ⊗ (W2)

α−1
α ≤ V1 ⊗ V2. (63)

This confirms that (W1⊗W2, V1⊗V2) is a feasible solution for the optimization of DM,α(A12∥B12). By
the assumption of (A1)

◦
+⊗ (A2)

◦
+ ⊆ (A12)

◦
+ and Lemma 8, we have hA12(V1⊗ V2) ≤ hA1(V1)hA2(V2),

which implies

α

α− 1
log hA12(V1 ⊗ V2) ≥

α

α− 1
log hA1(V1) +

α

α− 1
log hA2(V2). (64)

As the above relation holds for any feasible solutions, we have the asserted result in Eq. (62). ⊓⊔

By using the variational formula in Appendix A, we know that the superadditivity also holds for
α ∈ (0, 1/2). Next, we demonstrate the superadditivity of the measured relative entropy between two
sets of quantum states (i.e., the case α = 1). Instead of relying directly on the variational formula, we
employ a continuity argument. This approach allows us to avoid the assumption that the set is closed
under partial trace. In fact, the natural direct proof of superadditivity via the variational formula seems
to require this assumption (see more details in Appendix D).

Lemma 23. Let A ⊆ D and B ⊆H+ be two compact convex sets. Then

lim
α→1−

DM,α(A ∥B) = sup
α∈(0,1)

DM,α(A ∥B) = DM(A ∥B). (65)

Proof. Since DM,α is monotonically increasing in α, we have for any α > β,

DM,α(A ∥B) = inf
ρ∈A
σ∈B

DM,α(ρ∥σ) ≥ inf
ρ∈A
σ∈B

DM,β(ρ∥σ) = DM,β(A ∥B). (66)

So the divergence DM,α(A ∥B) is also monotonically increasing in α. This implies the first equality in
Eq. (65). Now we prove the second equality. Note that DM,α(ρ∥σ) is lower semi-continous on H+×H+
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for every α > 0 [MH23, Proposition III.11] and it is montonic increasing in α for every (ρ, σ) ∈ D×D .
Therefore, we can apply the minimax theorem given by [MH11, Corollary A.2] and get

sup
α∈(0,1)

DM,α(A ∥B) = sup
α∈(0,1)

inf
ρ∈A
σ∈B

DM,α(ρ∥σ) (67)

= inf
ρ∈A
σ∈B

sup
α∈(0,1)

DM,α(ρ∥σ) (68)

= inf
ρ∈A
σ∈B

DM(ρ∥σ) (69)

= DM(A ∥B), (70)

where the third line follows from the continuity of DM,α at α = 1 for quantum states. ⊓⊔

Combining Lemma 22 and Lemma 23, we have the superadditivity for measured relative entropy.

Lemma 24. Let H1,H2 be finite-dimensional Hilbert spaces. Consider convex and compact sets A1 ⊆
D(H1), A2 ⊆ D(H2), and A12 ⊆ D(H1 ⊗ H2) and also B1 ⊆ H+(H1), B2 ⊆ H+(H2), and
B12 ⊆H+(H1 ⊗H2). Assume that (A1)

◦
+ ⊗ (A2)

◦
+ ⊆ (A12)

◦
+ and (B1)

◦
+ ⊗ (B2)

◦
+ ⊆ (B12)

◦
+. Then,

DM(A12∥B12) ≥ DM(A1∥B1) +DM(A2∥B2). (71)

Remark 1 The above superadditivity is different than the result by Piani [Pia09, Theorem 1] under
compatible assumptions. Here we do not put constrains on the performed measurements. Therefore, the
measurements and the set of quantum states may not be compatible in the case here.

4 Generalized quantum asymptotic equipartition property

The asymptotic equipartition property (AEP) is a fundamental concept in information theory that de-
scribes the behavior of sequences of random variables as the sequence length increases [Cov99, HR11].
It essentially states that, for a large number of independent and identically distributed (i.i.d.) random
variables, the sequences exhibit regular and predictable behavior when considered collectively, despite
individual randomness. This concept has been extended to quantum information theory, where the quan-
tum version of the AEP applies to quantum states and quantum entropy (e.g. [TCR09, Tom16]). This
extension is particularly useful in the study of quantum source coding and other quantum communica-
tion protocols. In this work, we further generalize the quantum AEP beyond the i.i.d. framework by
considering quantum states drawn from two sets that satisfy the following assumptions.

Assumption 25. Consider a family of sets {An}n∈N satisfying the following properties,

• (A.1) Each An is convex and compact;

• (A.2) Each An is permutation-invariant;

• (A.3) Am ⊗Ak ⊆ Am+k, for all m, k ∈ N;

• (A.4) (Am)◦+ ⊗ (Ak)
◦
+ ⊆ (Am+k)

◦
+, for all m, k ∈ N.

The first three assumptions are standard in most existing literature (e.g. [BP10, BHLP20, HY24,
Lam24]), and the new assumption (A.4) is indeed satisfied by many cases of interest. For instance,
(A.4) holds when the set is a singleton of tensor product i.i.d. states, as in the existing quantum AEP;
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when it consists of the identity operator tensored with the set of all density operators, which is relevant
for conditional quantum entropies; or when it is the image of a quantum channel or a set of quantum
channels, a scenario that naturally arises in adversarial quantum channel discrimination (see Section 6).
It is also worth mentioning that even in cases where assumption (A.4) is not directly met, we can relax
the original set to fulfill the required conditions. For example, we can relax the set of all separable states
to the Rains set, which is widely used in entanglement theory, or relax the set of stabilizer states to those
with non-positive mana, a technique used in fault-tolerant quantum computing. These applications will
be discussed in detail in Section 8.

Now we proceed to present our main result in this work as follows.

Theorem 26. (Generalized AEP.) Let {An}n∈N and {Bn}n∈N be two sequences of sets satisfying As-
sumption 25 and An ⊆ D(H⊗n), Bn ⊆ H+(H⊗n). Assume moreover that Dmax(An∥Bn) ≤ cn, for
all n ∈ N and a constant c ∈ R+. Then for any ε ∈ (0, 1), it holds

lim
n→∞

1

n
DH,ε(An∥Bn) = lim

n→∞

1

n
Dmax,ε(An∥Bn) = D∞(A ∥B). (72)

In addition, D∞(A ∥B) can be estimated using the following bounds: for any m ≥ 1, we have

1

m
DM(Am∥Bm) ≤ D∞(A ∥B) ≤ 1

m
D(Am∥Bm) (73)

with explicit convergence guarantees

1

m
D(Am∥Bm)− 1

m
DM(Am∥Bm) ≤ 1

m
2(d2 + d) log(m+ d). (74)

where d = dimH.
If there is a constant C such that for any n ≥ 1 and ρn ∈ An, σn ∈ Bn, Dmax(ρn∥σn) ≤ Cn/4

and log Tr(σn) ≤ Cn/4,3we can obtain explicit bounds of the form:

−C ′f(n, ε) ≤ DH,ε(An∥Bn)− nD∞(A ∥B) ≤ C ′f(n, 1− ε), (75)

and

−C ′f(n, 1− 2ε)− log
1

ε
≤ Dmax,ε(An∥Bn)− nD∞(A ∥B) ≤ C ′f(n, ε) + log

2

ε2
, (76)

where f(n, ε) = n2/3 log n log1/3 1
ε and C ′ only depends on C and the local dimension d.

Remark 2 (Approximating D∞(A ∥B) efficiently.) Eq. (73) provides converging upper and lower
bounds on D∞(A ∥B) in terms of convex optimization programs as both D and DM are convex. In ad-
dition, if Am and Bm are semidefinite representable (i.e., can be written as the feasible sets of a semidefi-
nite program), then the upper bound 1

mD(Am∥Bm) is a quantum relative entropy program [CS17, FF18]
that can be solved using interior point methods [FS23]. For the lower bound 1

mDM(Am∥Bm), we use
Lemma 20 to write

DM(Am∥Bm) = sup
W,X
{−hAm(X) : W ∈ (Bm)◦++, X ≥ − logW} (77)

= sup
W,X,t,s

{−t+ s : t > 0, W ∈ (Bm)◦++, X + sI ∈ t(Am)◦+, X ≥ − logW} (78)

3 A slightly weaker condition is sufficient, see (∗).
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where we used the fact that hAm is monotone (i.e., hAm(X) ≤ hAm(Y ) if X ≤ Y ) since Am ⊆
H+, and that hAm(X + sI) = hAm(X) + s as Am ⊆ D so that hAm(X) = infs{hAm(X + sI) −
s : X + sI ≥ 0} = inf{t − s : t > 0 and X + sI ∈ tA ◦

m, X + sI ≥ 0}. If Am and Bm are
semidefinite representable, then, using semidefinite programming duality, we know that the sets (Bm)◦+
and {(t, s,X) : t > 0 and X + sI ∈ t(Am)◦+} are semidefinite representable. The last constraint in (78)
is convex since the matrix logarithm is operator concave, and the whole maximization problem (78) can
also be solved using interior-point methods [FS23].

Assuming the semidefinite programs describing Am,Bm are of size dO(m) (polynomial in the
Hilbert space dimension), then we can approximate D∞(A ∥B) within additive δ by a relative entropy
program of size dO(d2/δ) (using (74)). Furthermore as Am,Bm are invariant under permutations, we
have 1

mD(Am∥Bm) = 1
mD(Am ∩Im∥Bm ∩Im), where Im is the set of positive operators onH⊗m

that are invariant under permutations. In many settings Am ∩ Im,Bm ∩ Im can be described in size
polynomial in m (see e.g., [FST22]) which leads to programs of size polynomial in 1/δ.

The proof is provided in the following section.

4.1 Lemmas required to prove the generalized AEP

The proof of Theorem 26 requires the following lemmas.

Lemma 27. (Subadditivity.) Let D be a quantum divergence that is additive or subaddtive under tensor
product of quantum states. Let {An}n∈N and {Bn}n∈N be two sequences of sets satisfying (A.1) and
(A.3) in Assumption 25 and An ⊆ D(H⊗n), Bn ⊆H+(H⊗n), and D(An∥Bn) ≤ cn for all n ∈ N and
a constant c ∈ R+. Then for any m, k ∈ N, it holds

D(Am+k∥Bm+k) ≤ D(Am∥Bm) + D(Ak∥Bk). (79)

Proof. Note that the assumption D(An∥Bn) ≤ cn ensures that all divergences considered here are
finite. For any ρm ∈ Am, σm ∈ Bm, ρk ∈ Ak and σk ∈ Bk, we know that ρm ⊗ ρk ∈ Am+k and
σm ⊗ σk ∈ Bm+k by the assumption (A.3). This gives

D(Am+k∥Bm+k) ≤ D(ρm ⊗ ρk∥σm ⊗ σk) ≤ D(ρm∥σm) + D(ρk∥σk), (80)

where the second inequality follows by the additivity or subadditivity assumption of D. As the above
holds for any ρm, σm, ρk, σk, we have

D(Am+k∥Bm+k) ≤ inf
ρm∈Am
σm∈Bm

D(ρm∥σm) + inf
ρk∈Ak
σk∈Bk

D(ρk∥σk) = D(Am∥Bm) + D(Ak∥Bk), (81)

which completes the proof. ⊓⊔

Note that if a sequence of numbers {an}n∈N satisfies an+m ≤ an + am, then an/n is conver-
gent [Dav07, Lemma 4.1.2]. Therefore, if D satisifies the above assumptions, we have

D∞(A ∥B) = inf
n>1

1

n
D(An∥Bn). (82)
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Lemma 28. (Continuity.) Let {An}n∈N and {Bn}n∈N be two sequences of sets such that An ⊆
D(H⊗n), Bn ⊆ H+(H⊗n) and Dmax(An∥Bn) ≤ cn, for all n ∈ N and a constant c ∈ R+. If
these sets satisfy (A.1), (A.3) in Assumption 25, it holds

inf
α>1

D∞
S,α(A ∥B)= D∞(A ∥B). (83)

If these sets satisfy (A.1), (A.4) in Assumption 25, it holds

sup
α∈(0,1)

D∞
M,α(A ∥B)= D∞

M (A ∥B). (84)

Proof. Note that the assumption on Dmax(An∥Bn) ensures that all the divergences considered here are
finite. Then the following chain of relations hold

inf
α>1

D∞
S,α(A ∥B) = inf

α>1
inf
n>1

1

n
DS,α(An∥Bn) (85)

= inf
α>1

inf
n>1

inf
ρn∈An
σn∈Bn

1

n
DS,α(ρn∥σn) (86)

= inf
n>1

inf
ρn∈An
σn∈Bn

inf
α>1

1

n
DS,α(ρn∥σn) (87)

= inf
n>1

inf
ρn∈An
σn∈Bn

1

n
D(ρn∥σn) (88)

= inf
n>1

1

n
D(An∥Bn) (89)

= D∞(A ∥B) (90)

where the first and the last equalities follow from the assumptions (A.1) and (A.3) and therefore the sub-
additivity of DS,α(An∥Bn) and D(An∥Bn) from Lemma 27, and the fourth equality uses the continuity
of the sandwiched Rényi divergence at α = 1 for quantum states.

Similarly, we have the following

sup
α∈(0,1)

D∞
M,α(A ∥B) = sup

α∈(0,1)
sup
n>1

1

n
DM,α(An∥Bn) (91)

= sup
n>1

sup
α∈(0,1)

1

n
DM,α(An∥Bn) (92)

= sup
n>1

1

n
DM(An∥Bn) (93)

= D∞
M (A ∥B) (94)

where the first and the last equalities follow from the assumptions (A.1) and (A.4) and therefore the su-
peradditivity from Lemma 22 and Lemma 24, and the third equality uses the continuity of DM,α(An∥Bn)
at α = 1 from Lemma 23. This completes the proof. ⊓⊔

Lemma 29. (Asymptotic equivalence.) Let {An}n∈N and {Bn}n∈N be two sequences of sets satisfying
(A.1) and (A.2) in Assumption 25 and An ⊆ D(H⊗n), Bn ⊆H+(H⊗n) and Dmax(An∥Bn) ≤ cn, for
all n ∈ N and a constant c ∈ R+. Let d = dim(H) and α ∈ [1/2,∞). Then it holds

1

n
DM,α(An∥Bn) ≤

1

n
DS,α(An∥Bn) ≤

1

n
DM,α(An∥Bn) +

1

n
2(d2 + d) log(n+ d). (95)
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As a consequence, it holds

D∞
M,α(A ∥B) = D∞

S,α(A ∥B). (96)

Proof. Since DM,α(ρ∥σ) ≤ DS,α(ρ∥σ), it is clear that

1

n
DM,α(An∥Bn) ≤

1

n
DS,α(An∥Bn). (97)

Now we prove the second inequality. Let T be the twirling operation under permutation group. Then
for any ρn ∈ An and σn ∈ Bn, we have T (ρn) ∈ An and T (σn) ∈ Bn by the permutation-invariant
assumption (A.2) of {An}n∈N and {Bn}n∈N. This gives

DS,α(An∥Bn) ≤ DS,α(T (ρn)∥T (σn)) (98)

≤ DM,α(T (ρn)∥T (σn)) + 2 log |spec(T (σn))| (99)

≤ DM,α(T (ρn)∥T (σn)) + 2 log
[
(n+ 1)d(n+ d)d

2
]

(100)

≤ DM,α(ρn∥σn) + 2 log
[
(n+ 1)d(n+ d)d

2
]
, (101)

where the second inequality follows from Lemma 17, the third inequality follows from Lemma 18 and the
fact that T (σn) is permutation invariant, the last inequality follows from the data-processing inequality
of DM. As the above holds for any ρn ∈ An and σn ∈ Bn, we have

1

n
DS,α(An∥Bn) ≤

1

n
DM,α(An∥Bn) +

2

n
log
[
(n+ 1)d(n+ d)d

2
]
. (102)

Finally, noting that log[(n+1)d(n+ d)d
2
] ≤ (d2+ d) log(n+ d), we have the result in Eq. (95). Taking

limn→∞ in Eq. (95), we have the relation in Eq. (96). ⊓⊔

Lemma 30. (Finite estimation.) Let {An}n∈N and {Bn}n∈N be two sequences of sets satisfying As-
sumption 25 and An ⊆ D(H⊗n), Bn ⊆ H+(H⊗n) and Dmax(An∥Bn) ≤ cn, for all n ∈ N and a
constant c ∈ R+. Let d = dim(H). Then it holds

1

m
DM(Am∥Bm) ≤ D∞(A ∥B) ≤ 1

m
D(Am∥Bm). (103)

Proof. By the superadditivity of the measured relative entropy in Lemma 24 and the subadditivity of the
Umegaki relative entropy in Lemma 27 (by choosing α = 1), we have

D∞
M (A ∥B) = sup

m>1

1

m
DM(Am∥Bm), (104)

D∞(A ∥B) = inf
m≥1

1

m
D(Am∥Bm). (105)

This gives

1

m
DM(Am∥Bm) ≤ D∞

M (A ∥B) = D∞(A ∥B) ≤ 1

m
D(Am∥Bm) (106)

where the equality follows from the asymptotic equivalence in Eq. (96) by choosing α = 1. ⊓⊔

In order to obtain the explicit error bound, we use the following lemma.
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Lemma 31. Let {An}n∈N and {Bn}n∈N be two sequences of sets satisfying Assumption 25 and An ⊆
D(H⊗n), Bn ⊆H+(H⊗n). Let m ≥ 2 and assume there is a constant C > 0 such that

For all α ∈ [1/2, 1] : DP,3/2(ρ
(α)
m ∥σ(α)

m ) ≤ C

4
m and for all σm ∈ Bm : log Tr(σm) ≤ C

4
m,

(∗)

where ρ
(α)
m ∈ Am, σ

(α)
m ∈ Bm satisfy DP,α(ρ

(α)
m ∥σ(α)

m ) = DP,α(Am∥Bm).

For 1− 1
(2+C)m < α < 1, we have

0 ≤ D∞(A ∥B)− 1

m
DM,α(Am∥Bm) ≤ (1− α)(2 + C)2m+

2(d2 + d) log(m+ d)

m
, (107)

and for 1 < α < 1 + 1
(2+C)m , we have

0 ≤ 1

m
DS,α(Am∥Bm)−D∞(A ∥B) ≤ (α− 1)(2 + C)2m+

2(d2 + d) log(m+ d)

m
. (108)

Proof. We start by establishing (108). For that, we use the continuity of DS,α as α → 1+ as stated in
Lemma 51. More specifically,

1

m
DS,α(Am∥Bm) =

1

m
inf

ρm∈Am
σm∈Bm

DS,α(ρm∥σm) (109)

≤ 1

m
inf

ρm∈Am
σm∈Bm

D(ρm∥σm) + (α− 1)(log ηm)2 (110)

≤ 1

m
D(ρ(1)m ∥σ(1)

m ) + (α− 1)(log η(1)m )2 (111)

for α ∈ (1, 1+1/ log ηm) where
√
ηm = max(4, 22DP,3/2(ρm∥σm)+2−2DP,1/2(ρm∥σm)+1) and

√
η
(1)
m =

max(4, 22DP,3/2(ρ
(1)
m ∥σ(1)

m )+2−2DP,1/2(ρ
(1)
m ∥σ(1)

m )+1). The assumption (∗) gives DP,3/2(ρ
(1)
m ∥σ(1)

m ) ≤ C
4 m

and −DP,1/2(ρ
(1)
m ∥σ(1)

m ) ≤ log Tr(σ
(1)
m ) ≤ C

4 m. As a result, η(1)m ≤ (3 · 2Cm/2)2, which implies

log η
(1)
m ≤ 2 log 3 + Cm ≤ (2 + C)m. Finally, for α ∈

(
1, 1 + 1

(2+C)m

)
, we have

1

m
DS,α(Am∥Bm) ≤ 1

m
D(Am∥Bm) + (α− 1)(2 + C)2m (112)

≤ 1

m
DM(A ∥B) +

1

m
2(d2 + d) log(m+ d) + (α− 1)(2 + C)2m (113)

≤ D∞(A ∥B) +
1

m
2(d2 + d) log(m+ d) + (α− 1)(2 + C)2m (114)

using Lemma 29 then Lemma 30.
Now, we move to the approximation from below (107). We have

D∞(A ∥B)− 1

m
DM,α(Am∥Bm) ≤ 1

m
D(Am∥Bm)− 1

m
DS,α(Am∥Bm) (115)

+
1

m
DS,α(Am∥Bm)− 1

m
DM,α(Am∥Bm). (116)

For the term 1
mDS,α(Am∥Bm)− 1

mDM,α(Am∥Bm), we use Lemma 29 and obtain the bound

1

m
DS,α(Am∥Bm)− 1

m
DM,α(Am∥Bm) ≤ 2

(d2 + d) log(m+ d)

m
. (117)
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For the term 1
mD(Am∥Bm)− 1

mDS,α(Am∥Bm), we use the continuity bound for α→ 1− in Lemma 50.
For α ∈ (1/2, 1), we use the relation between the sandwiched and Petz Rényi divergences

DS,α(Am∥Bm) ≥ inf
ρm∈Am,σm∈Bm

αDP,α(ρm∥σm)− (1− α) log Trσm (118)

≥ DP,α(ρ
(α)
m ∥σ(α)

m ))− (1− α)(DP,α(ρ
(α)
m ∥σ(α)

m )) +
C

4
m) (119)

≥ D(ρ(α)m ∥σ(α)
m )− (1− α)

(
(log η(α)m )2 +D(ρ(α)m ∥σ(α)

m ) +
C

4
m

)
, (120)

provided α ∈ (1 − 1/ log η
(α)
m , 1) with

√
η
(α)
m = max(4, 1 + 2DP,3/2(ρ

(α)
m ∥σ(α)

m ) + 2−DP,1/2(ρ
(α)
m ∥σ(α)

m )).

Again we have log η
(α)
m ≤ 2 log 3 + Cm. As a result, we get

1

m
DS,α(Am∥Bm) ≥ 1

m
D(Am∥Bm)− (1− α)

(
(2 log 3 + Cm)2/m+ C/2

)
(121)

≥ 1

m
D(Am∥Bm)− (1− α)(2 + C)2m, (122)

for m ≥ 2 and where we used Lemma 30. ⊓⊔

Now we are ready to prove the generalized AEP in Theorem 26.

4.2 Proof of the generalized AEP

We prove the results first for DH,ε. The results for Dmax,ε will follow easily at the end. By using the
relation of hypothesis testing relative entropy and the sandwiched Rényi divergence (see Lemma 13), it
holds for any ε ∈ (0, 1) and α > 1,

DH,ε(ρ∥σ) ≤ DS,α(ρ∥σ) +
α

α− 1
log

1

1− ε
. (123)

This implies

1

n
DH,ε(An∥Bn) ≤

1

n
DS,α(An∥Bn) +

1

n

α

α− 1
log

1

1− ε
. (124)

We start by establishing the upper bound on the asymptotic statement (72) for DH,ε. Taking n go to
infinity, we have

lim sup
n→∞

1

n
DH,ε(An∥Bn) ≤ lim sup

n→∞

1

n
DS,α(An∥Bn) = D∞

S,α(A ∥B). (125)

As the above relation holds for any α > 1, we can take the infimum of α on the right-hand side and get

lim sup
n→∞

1

n
DH,ε(An∥Bn) ≤ inf

α>1
D∞

S,α(A ∥B) = D∞(A ∥B), (126)

where the equality follows from the continuity in Lemma 28.
We now establish the explicit upper bound (75). We start from (124) and first use the subadditivity of

DS,α (Lemma 27) and write for some m ≥ 2 to be chosen later and n = m⌊n/m⌋+ r with 0 ≤ r < m:

DH,ε(An∥Bn) ≤ ⌊n/m⌋DS,α(Am∥Bm) +DS,α(Ar∥Br) +
α

α− 1
log

1

1− ε
(127)

≤ ⌊n/m⌋DS,α(Am∥Bm) + Cm+
α

α− 1
log

1

1− ε
. (128)
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We now use Lemma 31 for m ≥ 2 and α ≤ 1 + 1
(2+C)m to get

1

m
DS,α(Am∥Bm) ≤ D∞(A ∥B) + (α− 1)(2 + C)2m+

2(d2 + d) log(m+ d)

m
. (129)

Let us now choose α − 1 = 8d2 logm
(2+C)2m2 and assume that m ≥ max

(
d,
(
16d2

2+C

)2)
so that the condition

α ≤ 1 + 1
(2+C)m is satisfied and log(m+ d) ≤ 2 logm. With this choice, we have

DS,α(Am∥Bm) ≤ mD∞(A ∥B) + 16d2 logm. (130)

Getting back to (128), we get

DH,ε(An∥Bn) ≤ ⌊n/m⌋mD∞(A ∥B) + ⌊n/m⌋16d2 logm+ Cm+
2(2 + C)2m2

8d2 logm
log

1

1− ε
.

(131)

Note that if D∞(A ∥B) ≥ 0, we have

⌊n/m⌋mD∞(A ∥B) ≤ nD∞(A ∥B) (132)

and otherwise,

⌊n/m⌋mD∞(A ∥B) ≤ nD∞(A ∥B)−mD∞(A ∥B) ≤ nD∞(A ∥B) + Cm, (133)

using the condition 1
n log Tr(σn) ≤ C for any n ≥ 1 and σn ∈ Bn. As a result,

DH,ε(An∥Bn) ≤ nD∞(A ∥B) +
n16d2

m
logm+ 2Cm+

2(2 + C)2m2

8d2 logm
log

1

1− ε
. (134)

We now choose m =

(
64d4n

(2+C)2 log 1
1−ε

)1/3

and get

DH,ε(An∥Bn) ≤ nD∞(A ∥B) + C ′n2/3 log n

(
log

1

1− ε

)1/3

. (135)

for some constant C ′ that only depends on d and C.
Now we prove the other direction starting first with the asymptotic statement (72). Using the relation

of hypothesis testing relative entropy and the Petz Rényi divergence (see Lemma 13), it holds for any
ε ∈ (0, 1) and α ∈ (0, 1),

DH,ε(ρ∥σ) ≥ DP,α(ρ∥σ) +
α

α− 1
log

1

ε
≥ DM,α(ρ∥σ) +

α

α− 1
log

1

ε
, (136)

where the second inequality follows from the data-processing inequality of the Petz Rényi divergence.
Applying this to two sets of quantum states, we get

1

n
DH,ε(An∥Bn) ≥

1

n
DM,α(An∥Bn) +

1

n

α

α− 1
log

1

ε
. (137)

Taking n to infinity, we get

lim inf
n→∞

1

n
DH,ε(An∥Bn) ≥ lim inf

n→∞

1

n
DM,α(An∥Bn) = D∞

M,α(A ∥B). (138)

As the above relation holds for any α ∈ (0, 1), we take the supremum of α and get

lim inf
n→∞

1

n
DH,ε(An∥Bn) ≥ sup

α∈(0,1)
D∞

M,α(A ∥B) = D∞
M (A ∥B) = D∞(A ∥B) (139)
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where the first equality follows from the continuity in Lemma 28 and the second equality follows from
the asymptotic equivalence in Lemma 29. Putting Eqs. (126) and (139) together, we have the asserted
result in Eq. (72) about the hypothesis testing relative entropy.

We now prove the explicit lower bound statement in (75). Starting from (137) and using the super-
additivity statement in Lemma 24 with n = m⌊n/m⌋+ r, we have

DH,ε(An∥Bn) ≥ ⌊n/m⌋DM,α(Am∥Bm) +DM,α(Ar∥Br) +
α

α− 1
log

1

ε
(140)

≥ ⌊n/m⌋DM,α(Am∥Bm)− Cm+
α

α− 1
log

1

ε
(141)

where we used the fact that DM,α(Ar∥Br) ≥ DP,0(Ar∥Br) ≥ infσr∈Br − log Trσr ≥ −Cr as per
Lemma 16.

We now apply Lemma 31 for m ≥ 2 and α ≥ 1− 1
(2+C)m to get

1

m
DM,α(Am∥Bm) ≥ D∞(A ∥B)− (1− α)(2 + C)2m+

2(d2 + d) log(m+ d)

m
. (142)

Let us now choose 1 − α = 8d2 logm
(2+C)2m2 and assume that m ≥ max

(
d,
(
16d2

2+C

)2)
so that the condition

α ≥ 1− 1
(2+C)m is satisfied and log(m+ d) ≤ 2 logm. With this choice, we have

DM,α(Am∥Bm) ≥ mD∞(A ∥B)− 16d2 logm. (143)

Getting back to (140), we get

DH,ε(An∥Bn) ≥ ⌊n/m⌋mD∞(A ∥B)− ⌊n/m⌋16d2 logm+ Cm− 2(2 + C)2m2

8d2 logm
log

1

ε
. (144)

Note that if D∞(A ∥B) ≥ 0, we have

⌊n/m⌋mD∞(A ∥B) ≥ nD∞(A ∥B)−mD∞(A ∥B) ≥ nD∞(A ∥B)−mC (145)

because for all n ≥ 1, D(An∥Bn) ≥ DP,0(An∥Bn) ≥ infσn∈Bn − log Tr(σn) ≥ −Cn. Otherwise, if
D∞(A ∥B) < 0, then

⌊n/m⌋mD∞(A ∥B) ≥ nD∞(A ∥B) (146)

As a result,

DH,ε(An∥Bn) ≥ nD∞(A ∥B)− n16d2

m
logm− 2Cm− 2(2 + C)2m2

8d2 logm
log

1

ε
. (147)

We now choose m =
(

64d4n
(2+C)2 log 1

ε

)1/3
and get

DH,ε(An∥Bn) ≥ nD∞(A ∥B)− C ′n2/3 log n

(
log

1

ε

)1/3

. (148)

for some constant C ′ that only depends on d and C.
The analogous statements for Dmax,ε follow directly from known relations between Dmax,ε and

DH,ε. In fact, we have for any ε ∈ (0, 1) and ε′ ∈ (0, 1− ε),

DH,ε′(ρ∥σ) + log
(
1− ε− ε′

)
≤ Dmax,ε(ρ∥σ) ≤ D

H,1− 1
2
ε2(ρ∥σ) + log

(
2

ε2

)
. (149)

The upper bound is from [DKF+14, Proposition 4.1] and the lower bound from [DMHB13, Theorem
11]. Taking the infimum over ρ ∈ An and σn ∈ Bn, and then the limit as n → ∞, we get the Dmax,ε

statement in (72). Moreover, combining this bound with ε′ = 1− 2ε and (75) gives (76).
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5 Application 1: another generalized quantum Stein’s lemma

Given many i.i.d. copies of a quantum system described by either the state ρ or σ (referred to as the null
and alternative hypotheses, respectively), what is the optimal measurement to determine the true state?
In asymmetric hypothesis testing, the objective is to minimize the probability of mistakenly identifying ρ
as σ, while keeping the probability of identifying σ as ρ below a small, fixed threshold. The well-known
quantum Stein’s lemma [HP91, NO00] establishes that the asymptotic exponential rate at which this error
probability tends to zero is given by the quantum relative entropy between ρ and σ. This result was later
extended to distinguish between an i.i.d. state and a set of quantum states by Brandão and Plenio [BP10].
However, a gap in the original proof was discovered [FGW21, BBG+23, BBG+24], which was recently
resolved by [HY24], with an alternative proof provided by [Lam24].

In this section, we propose a new generalization of the quantum Stein’s lemma that distinguishes
between two sets of quantum states beyond the i.i.d. framework. Our results allows both a composite null
hypothesis and composite alternate hypothesis. Moreover, we introduce a new framework of quantum
resource theory with partial information and prove that such a theory is reversible under asymptotically
resource non-generating operations, identifying the regularized quantum relative entropy between two
sets as the “unique” measure of resource in this new framework.

5.1 Operational setting: quantum hypothesis testing between two sets of states

Let us first introduce the operational setting for quantum hypothesis testing between two sets of quantum
states. In this setting, a tester draws samples from two sets of quantum states, An and Bn, and performs
measurements to determine which set the sample belongs to. The null hypothesis assumes that the sample
comes from An, while the alternative hypothesis assumes it is drawn from Bn. An illustration of this
task is provided in Figure 1. Such a setting provides a very general framework. For instance, it includes
the standard quantum Stein’s lemma when An and Bn are two singletons of i.i.d. states [HP91, NO00].
It also encompasses the generalized quantum Stein’s lemma [HY24, Lam24], where the null hypothesis
An is a singleton of i.i.d. states and Bn is a set of quantum states. Additionally, it covers the composite
quantum Stein’s lemma setting, as explored in [BBH21], which deals with mixtures of i.i.d. states in
both An and Bn. This framework can further accommodate the correlated states setting, as studied
in [HMO08, MO15], where An and Bn are particular sets of correlated states on a finite spin chain.

Figure 1: An illustration of the quantum hypothesis testing between two sets of quantum states An and
Bn. A tester draws samples from the sets and performs quantum measurement to determine which class
the sample belongs to. The null hypothesis is that the sample is from An, which typically represents the
bad case, and the alternative hypothesis is that the sample is from Bn.

As in standard hypothesis testing, the tester will make two types of errors:

• Type-I error: The sample is from An, but the tester incorrectly classifies it as coming from Bn,

• Type-II error: The sample is from Bn, but the tester incorrectly classifies it as coming from An.
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In general, we take the null hypothesis as the more challenging case and aim to control the type-I
error rate within a constant threshold. Under this constraint, the goal is to minimize the type-II error
as much as possible. To distinguish between two sets An and Bn, we use a quantum measurement
{Mn, I −Mn}. Since we aim to control the discrimination errors for any state within the given sets,
regardless of which one is drawn, the type-I error is defined by

α(An,Mn) := sup
ρn∈An

Tr[ρn(I −Mn)], (150)

and the type-II error is defined by

β(Bn,Mn) := sup
σn∈Bn

Tr[σnMn]. (151)

The asymmetric setting then seeks to determine the optimal exponent at which the type-II error proba-
bility decays, known as the Stein’s exponent, while keeping the type-I error within a fixed threshold ε.
Specifically, the goal is to evaluate:

βε(An∥Bn) := inf
0≤Mn≤I

{β(Bn,Mn) : α(An,Mn) ≤ ε} . (152)

5.2 Generalized quantum Stein’s lemma

Before presenting our generalized quantum Stein’s lemma, we first show that the operational quantity
βε(An∥Bn) in Eq. (152) is given by the hypothesis testing relative entropy between two sets of quantum
states An and Bn, as mathematically defined in Definition 19.

Lemma 32. Let A ⊆ D and B ⊆H+ be two convex sets. For any ε ∈ (0, 1), it holds

− log βε(A ∥B) = DH,ε(A ∥B). (153)

Proof. Note that, unless both A and B are singletons, the stated result does not follow trivially from
their definitions. This is because the left-hand side represents an operational quantity, while the right-
hand side is a mathematical generalization. To prove this result, it is sufficient to show that

βε(A ∥B) = inf
0≤M≤I

{
sup
σ∈B

Tr[σM ] : sup
ρ∈A

Tr[ρ(I −M)] ≤ ε

}
= sup

ρ∈A
sup
σ∈B

βε(ρ∥σ). (154)

This requires pulling the supremum over A in the condition and the supremum over B in the objective
function to the left-hand side of inf0≤M≤I , which is a non-trivial task. First observe that we can write:

βε(A ,B) := inf
0≤M≤I

{
sup
σ∈B

Tr[σM ] : sup
ρ∈A

Tr[ρ((1− ε)I −M)] ≤ 0

}
(155)

= inf
0≤M≤I

sup
σ∈B

sup
ρ∈A

sup
z>0

Tr[σM ] + zTr[ρ((1− ε)−M)] (156)

since supz>0Tr[σM ] + zTr[ρ((1 − ε)I −M)] = 0 if Tr[ρ((1 − ε)I −M)] ≤ 0 and +∞ otherwise.
By doing the change of variables ρ′ = zρ ∈ Cone(A ) where Cone(A ) is the convex cone generated by
A , we can write:

βε(A ,B) = inf
0≤M≤I

sup
ρ′∈Cone(A )

σ∈B

Tr[σM ] + Tr[ρ′((1− ε)I −M)] (157)
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Define

f(M,ρ′, σ) = Tr[σM ] + zTr[ρ′((1− ε)I −M)] (158)

which is linear in M for (ρ′, σ) fixed, and vice-versa. Furthermore the set {M : 0 ≤M ≤ I} is convex
compact, and Cone(A ) ×B is convex. So Sion’s minimax theorem [Sio58, Corollary 3.3] applies and
we can write

βε(A ,B) = sup
ρ′∈Cone(A )

σ∈B

inf
0≤M≤I

Tr[σM ] + Tr[ρ′((1− ε)I −M)] (159)

= sup
ρ∈A
σ∈B

sup
z>0

inf
0≤M≤I

Tr[σM ] + zTr[ρ((1− ε)−M)] (160)

= sup
ρ∈A
σ∈B

inf
0≤M≤I

sup
z>0

Tr[σM ] + zTr[ρ((1− ε)I −M)] (161)

= sup
ρ∈A
σ∈B

inf
0≤M≤I

{Tr[σM ] : Tr[ρ((1− ε)I −M)] ≤ 0} (162)

= sup
ρ∈A
σ∈B

βε(ρ, σ) (163)

where in the third line we applied Sion’s minimax theorem again to interchange the supz>0 with the
inf0≤M≤1. This completes the proof. We can also refer to Appendix B for an alternative proof. ⊓⊔

Due to the above relation between the optimal type-II error βε(A ∥B) and the hypothesis testing rel-
ative entropy DH,ε(A ∥B), we can now apply the generalized AEP in Theorem 26 to derive a generalized
quantum Stein’s lemma as follows.

Theorem 33. (Generalized quantum Stein’s lemma.) Let {An}n∈N and {Bn}n∈N be two sequences of
sets satisfying Assumption 25 and An ⊆ D(H⊗n), Bn ⊆ H+(H⊗n) and Dmax(An∥Bn) ≤ cn, for all
n ∈ N and a constant c ∈ R+. Then for any ε ∈ (0, 1), it holds

lim
n→∞

− 1

n
log βε(An∥Bn) = D∞(A ∥B). (164)

Proof. This is a direct consequence of Theorem 26 and Lemma 32. ⊓⊔

Note that Theorem 33 is incomparable to the generalized quantum Stein lemma of [BP10, HY24,
Lam24]. It is weaker in the sense that we have the additional assumption on the stability of the polar
sets under tensor product (see (A.4) on Assumption 25) for the alternate hypothesis Bn, but it is stronger
in that it allows for a composite null hypothesis and in addition we can obtain efficient and controlled
approximations of the Stein exponent as presented in Theorem 26.

5.3 Quantum resource theory with partial information and its reversibility

Quantum resource theory is a framework that finds great success in studying different quantum resource
features in recent years (see e.g. [CG19] for an introduction). A standard resource theory is built upon a
set of free operations Ω and a set of free states F (in contrast to resource states). Take the entanglement
theory as an example, F consists of the separable (unentangled) states, and local operationa and classical
communication (LOCC) is a standard choice of Ω. In principle, F and Ω can be adaptively defined,
which give rise to a wide variety of meaningful resource theories, as long as they follow a golden rule:
any free operation can only map a free state to another free state, i.e. Λ(ρ) ∈ F , ∀ρ ∈ F ,∀Λ ∈ Ω.
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Whether some resource state can be (approximately) converted to another by certain free operations is a
fundamental type of problem in quantum information.

Existing studies on quantum resource theory require precise characterization of the source and the
target states, and impose an i.i.d. structure, that is, considering transformation ρ⊗n to σ⊗m and evaluating
the rate of transformation m/n. A standard approach to obtain a precise characterization of the state
to be manipulated is quantum tomography, which is a resource-intensive task. In practical scenarios,
full knowledge of the source state may be unavailable, and different copies of the sources can exhibit
correlation by nature. For instance, when establishing entangled photons over a remote distance in a
quantum network, the noise affecting the states can vary over time for different copies of the entangled
state, making the precise description of the shared state unclear.

Motivated by this, we propose a new framework of quantum resource theory in this section that works
with resource manipulation with partial information. More specifically, we consider the transformation
of a quantum state ρn ∈ D(A⊗n) to another quantum state σm ∈ D(B⊗m). In this case, we do not have
complete information about the specific states ρn and σm. All we know is that the source state lies within
a certain set of quantum states An (for example, we may know the range of noise affecting the source).
Our goal is to design a resource manipulation protocol Λ such that regardless of the specific state in An,
it universally transforms this state into a target state that falls within the target range Bn. A comparison
of this setting with the standard resource manipulation is depicted in Figure 2.

Figure 2: Illustration of the standard quantum resource manipulation (left) that transforms an i.i.d. state
ρ⊗n to another i.i.d. state σ⊗m and the quantum resource manipulation with partial information (right)
that transforms an unknown quantum state in An to a quantum state in the target range Bm.

Let ∆(ρ, σ) := 1
2∥ρ − σ∥1 be the trace distance between two quantum states. Consider quantum

state transformation from An to Bm via free operation class Ωn, and define the transformation error by

∆
(
An

Ωn−−→ Bm

)
:= inf

Λn∈Ωn

sup
ρn∈An

inf
σm∈Bm

∆(Λn(ρn), σm). (165)

That is, there exists a free operation Λn ∈ Ωn such that it universally transforms any state in ρn ∈ An

to a quantum state σm ∈ Bm within the error ∆
(
An

Ωn−−→ Bm

)
. Based on this notion of error measure,

we can introduce the asymptotic rate of transformation by

r
(
A

Ω−→ B
)
:= sup

{
lim sup
n→∞

mn

n
: lim
n→∞

∆
(
An

Ωn−−→ Bmn

)
= 0

}
, (166)

which is the optimal achievable rate of transformation with vanishing transformation error.
As the previous generalized quantum Stein’s lemma [BP10, HY24, Lam24] is deeply related to the

reversibility of quantum resource manipulation, here we show an analogy result in this new framework.

28



We say a quantum resource theory with partial information is reversible if the asymptotic rate satisfies,

r
(
A

Ω−→ B
)
· r
(
B

Ω−→ A
)
= 1, (167)

which means we can transform from A to B and then back from B to A without compromising any
resources. For this, we consider the asymptotically resource non-generating operations RNG introduced
in [BP10]. A quantum operation Λ is called δ-resource nongenerating operation if for every free state
ω ∈ F , we haveR(Λ(ω)) ≤ δ, where

R(ρ) := min
π∈D

{
s ≥ 0 :

ρ+ sπ

1 + s
∈ F

}
(168)

is the global robustness of ρ. Simple calculation tells that, log(R(ρ) + 1) = Dmax(ρ∥F ). Then we
denote the set of all δ-resource nongenerating operations by RNG(δ). An asymptotically resource non-
generating operation is a sequence of operations {Λn}n∈N such that Λn ∈ RNG(δn) and limn→∞ δn =
0. With this, the asymptotic rate of transformation under RNG operations is given by

r
(
A

RNG−−−→ B
)
= sup

{
lim sup
n→∞

mn

n
: lim
n→∞

∆

(
An

RNG(δn)−−−−−−→ Bmn

)
= 0, lim

n→∞
δn = 0

}
. (169)

The following result gives a precise characterization of this asymptotic rate, which identifies the
regularized quantum relative entropy between two sets as the “unique” measure of a resource in the
asymptotic limit. It also implies the reversibility (also referred to as the second law) of the resource
manipulation under RNG.

Theorem 34. Let {An}n∈N, {Bn}n∈N and {Fn}n∈N be threes sequences of sets satisfying Assump-
tion 25 where An ⊆ D(H⊗n) and Bn ⊆ D(H⊗n) are the sets of source states and the sets of target
states, respectively, and Fn ⊆ D(H⊗n) are the sets of free states, which defines the operation class
RNG. Let κ := lim supn→∞

1
n maxω∈D D(ω∥Fn) <∞ and D∞(B∥F ) > 0. Then it holds

r
(
A

RNG−−−→ B
)
=

D∞(A ∥F )

D∞(B∥F )
. (170)

Proof. The proof applies the generalized AEP in Theorem 26 and follows a similar argument in [BG15]
and also a more detailed version in [Gou24, Chapter 11]. This proof contains the converse and the
achievable parts, and we will prove the converse part first.

1) Proof of the converse part: Suppose by contradiction that

r
(
A

RNG−−−→ B
)
>

D∞(A ∥F )

D∞(B∥F )
+ 2δ, (171)

for some small positive δ. By definition, this means in particular that for sufficiently small ε ∈ (0, 1),
there exists an achievable rate r such that

r >
D∞(A ∥F )

D∞(B∥F )
+ δ. (172)

That is, there exists a sequence {mn}n∈N ⊆ N such that r = limn→∞
mn
n and there exists another

sequence {δn}n∈N ⊆ R+ with a limit of zero such that for every n ∈ N,

∆

(
An

RNG(δn)−−−−−−→ Bmn

)
≤ ε. (173)
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This means that there exists Λn ∈ RNG(δn) such that for any ρn ∈ An

∆(Λn(ρn), σmn) ≤ ε, (174)

for some σmn ∈ Bmn . By using the continuity in [Gou24, Theorem 10.2.2], we have

|D(Λn(ρn)∥Fmn)−D(σmn∥Fmn)| ≤ cmnε+ (1 + ε)h

(
ε

1 + ε

)
, (175)

where cmn
:= maxω∈D D(ω∥Fmn) and h(x) is the binary Shannon entropy. This gives

D(σmn∥Fmn) ≤ D(Λn(ρn)∥Fmn) + cmnε+ (1 + ε)h

(
ε

1 + ε

)
. (176)

Since D(Bmn∥Fmn) ≤ D(σmn∥Fmn) by definition, we get

D(Bmn∥Fmn) ≤ D(Λn(ρn)∥Fmn) + cmnε+ (1 + ε)h

(
ε

1 + ε

)
. (177)

Now, let ωn ∈ Fn be the optimizer satisfying D(ρn∥ωn) = D(ρn∥Fn). Then we have

D(Λn(ρn)∥Fmn) = min
τmn∈Fmn

D(Λn(ρn)∥τmn) (178)

≤ D(Λn(ρn)∥Λn(ωn)) + min
τmn∈Fmn

Dmax(Λn(ωn)∥τmn) (179)

≤ D(ρn∥ωn) +Dmax(Λn(ωn)∥Fmn) (180)

where the first inequality follows from the triangle inequality D(ρ∥σ) ≤ D(ρ∥ω) + Dmax(ω∥σ) (see
e.g. [Gou24, Theorem 6.3.3]), and the second inequality follows from the data-processing inequality of
quantum relative entropy. Since ωn is a free state and Λn ∈ RNG(δn), the global robustness of Λn(ωn)
cannot exceed δn by definition and in particular Dmax(Λn(ωn)∥Fmn) ≤ log(1 + δn). Therefore,

D(Λn(ρn)∥Fmn) ≤ D(ρn∥Fn) + log(1 + δn), (181)

where we use the optimality assumption of ωn here. Taking this into Eq. (177), we get

D(Bmn∥Fmn) ≤ D(ρn∥Fn) + log(1 + δn) + cmnε+ (1 + ε)h

(
ε

1 + ε

)
. (182)

As this holds for any ρn ∈ An, we have

D(Bmn∥Fmn) ≤ D(An∥Fn) + log(1 + δn) + cmnε+ (1 + ε)h

(
ε

1 + ε

)
. (183)

Noting that limn→∞mn/n = r and limn→∞
1

mn
cmn ≤ κ, we have

lim
n→∞

1

mn
D(Bmn∥Fmn) ≤ lim

n→∞

n

mn

1

n
D(An∥Fn) + κε. (184)

That is,

D∞(B∥F ) ≤ 1

r
D∞(A ∥F ) + κε. (185)

However, since r > D∞(A ∥F )
D∞(B∥F ) + δ for sufficiently small ε ∈ (0, 1), we get a contradiction that

D∞(B∥F ) ≤ 1

r
D∞(A ∥F ) + κε < D∞(B∥F ), (186)
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by taking a small enough ε ∈ (−∞, δD∞(B∥F )/κ) ∩ (0, 1). This concludes the converse part.
2) Proof of the achievable part: For any

r <
D∞(A ∥F )

D∞(B∥F )
, (187)

we aim to show that r is an achievable rate. For this, we fix ε ∈ (0, 1) and denote mn := ⌈nr⌉ so
that limn→∞mn/n = r. Let Mn be the optimal test for βε(An∥Fn). That is, for any δ > 0 (will be
determined later) and sufficiently large n, we have from the generalized AEP in Theorem 26,

sup
ρn∈An

Tr[ρn(I −Mn)] ≤
ε

2
, and sup

ωn∈Fn

Tr[ωnMn] ≤ 2−n(D∞(A ∥F )−δ). (188)

Let σ∗
mn

and σ′
mn

be the optimizers satisfying

Dmax,ε/2(Bmn∥Fmn) = Dmax,ε/2(σ
∗
mn
∥Fmn) = Dmax(σ

′
mn
∥Fmn) (189)

where ∆(σ′
m, σ∗

m) ≤ ε/2 4. Define the sequence of maps

Λn(X) := Tr[MnX]σ′
mn

+Tr[(I −Mn)X]ωmn , (190)

where ωmn ∈ Fmn is a free state. Then we can check that these operations give the expected transfor-
mation within the error threshold, and they are indeed asymptotically resource nongenerating operations.
For this, we can first check that for any ρn ∈ An,

∆(Λn(ρn), σ
∗
mn

) ≤ ∆(Λn(ρn), σ
′
mn

) + ∆(σ′
mn

, σ∗
mn

) (191)

= (1− Tr[Mnρn])∆(ωmn , σ
′
mn

) + ∆(σ′
mn

, σ∗
mn

) (192)

≤ ε, (193)

where the first inequality follows from the triangle inequality of the trace distance, the equality follows
by evaluating Λn(ρn) using the definition and the second inequality follows by Eq. (188) and the fact
that ∆(ωmn , σ

′
mn

) ≤ 1. As this holds for any ρn ∈ An, we have

sup
ρn∈An

inf
σmn∈Bmn

∆(Λn(ρn), σmn) ≤ ε. (194)

Then we check Λn ∈ RNG(δn) with δn = 2−nδ and therefore limn→∞ δn = 0 (note that δ will be
determined later). We have the following

D∞(B∥F ) = lim
n→∞

1

mn
Dmax,ε/2(Bmn∥Fmn) (195)

= lim
n→∞

1

mn
Dmax(σ

′
mn
∥Fmn) (196)

= lim
n→∞

n

mn

1

n
Dmax(σ

′
mn
∥Fmn) (197)

=
1

r
lim
n→∞

1

n
Dmax(σ

′
mn
∥Fmn), (198)

where the first line follows from the generalized AEP in Theorem 26, the second line follows by the
optimality assumption of σ′

mn
in Eq. (189) and the last equality follows since limn→∞mn/n = r. Since

r < D∞(A ∥F )
D∞(B∥F ) , there exists δ > 0 such that r < (D∞(A ∥F )− 2δ)/D∞(B∥F ), or equivalently,

rD∞(B∥F ) < D∞(A ∥F )− 2δ. (199)

4 Here we use trace distance for the definition of the smoothed max-relative entropy for convenience.
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Taking this into Eq. (198), we have for sufficiently large n,

Dmax(σ
′
mn
∥Fmn) ≤ n(D∞(A ∥F )− 2δ). (200)

That is, the global robustness of σ′
mn

satisfies

R(σ′
mn

) ≤ 2n(D
∞(A ∥F )−2δ) − 1. (201)

To show that Λn ∈ RNG(δn), let ηn ∈ Fn and denote by tn := Tr[Mnηn] and rmn
:= R(σ′

mn
). From

the convexity of global robustness we get

R(Λn(ηn)) ≤ tnR(σ′
mn

) + (1− tn)R(ωmn) (202)

= tnrmn (203)

≤ tn(rmn + 1) (204)

≤ tn2
n(D∞(A ∥F )−2δ) (205)

≤ 2−nδ (206)

= δn (207)

where the second line follows because ωmn ∈ Fmn ant therefore R(ωmn) = 0, the fourth line follows
by Eq. (201) and the fifth line follows as tn ≤ 2−n(D∞(A ∥F )−δ) by Eq. (188). This concludes that
Λn ∈ RNG(δn) and therefore concludes the proof of the achievable part. ⊓⊔

As special cases, the conventional entanglement distillation task—where the set of free states is given
by the Rains set—and magic state distillation—where the free states have non-positive mana—both fit
within this new framework. Further discussion, including explanations of why these cases satisfy the
assumptions of the theorem, can be found in Section 8.

6 Application 2: adversarial quantum channel discrimination

In this section, we explore adversarial quantum channel discrimination using both adaptive and non-
adaptive strategies, deriving the corresponding quantum Stein’s lemma for channels. In particular, we
will see that the Stein’s exponent is determined by a new notion of quantum channel divergence.

6.1 Operational setting: adversarial quantum channel hypothesis testing

Consider a scenario in which a tester is working with an untrusted quantum device that generates a
quantum state upon request. This device guarantees that the state is produced by either the quantum
channel N (the bad case) or the quantum channelM (the good case). The tester is permitted to request
multiple samples from the device and perform measurements to determine which channel is being used.
However, because the device is untrusted, it may have access to the environmental system of the channel
and also possess an internal memory that correlates with the generated samples, actively misleading the
tester and undermining their ability to correctly identify the channel.

The key question is: How effectively can the tester distinguish between the good and bad cases while
playing against the adversary? Such a setting has been studied by [BHLP20, Theorem 2] in the classical
case. 5 Here we investigate the general quantum case.

More formally, let NA→B orMA→B be two quantum channels and UA→BE and VA→BE be their
Stinspring dialations, respectively, with E being the environmental system. Denote

UA→BE(·) = UA→BE(·)U †
A→BE , and VA→BE(·) = VA→BE(·)V †

A→BE . (208)

5 In [BHLP20], the problem is formulated in terms of convex sets P,Q of probability distributions. We find it convenient for
a quantum generalization (and operationally well-motivated) to define the sets P and Q as the images of all input probability
distributions of some physical channels that we denote N and M. This means that the channel N takes as input a description
of some p ∈ P and outputs a sample from p.
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Then we have

NA→B = TrE ◦UA→BE , and MA→B = TrE ◦ VA→BE . (209)

The adversarial quantum channel discrimination proceeds as follows. Suppose the channel is given
by U . First, the adversary prepares a quantum state using a channel P1 ∈ CPTP(R0E0 : A1R1)
with |R0| = |E0| = 1, and sends system A1 to the channel U to generate an output state U ◦ P1.
Then the adversary returns system B1 to the tester. After this, the adversary performs an internal update
P2 ∈ CPTP(E1R1 : A2R2) and sends system A2 to the channel to generate another output U◦P2◦U◦P1

and returns system B2 to the tester. These processes can be repeated n times. Finally, the tester performs
a quantum measurement {Mn, I −Mn} on the systems B[n] := B1 · · ·Bn in their possession to decide
which channel was used to prepare the states. An illustation of this process is depicted in Figure 3.

Figure 3: Adversarial quantum channel hypothesis testing for three uses of the channel, where U and V
are the Stinspring dilations of quantum channelsN andM respectively,Pi andQi are internal operations
controlled by the adversary, {Mn, I −Mn} is a quantum measurement performed by the tester.

After n uses of the channel, the tester obtains an overall state on the systems B[n] as:

ρ[{P i}ni=1] := TrRnEn

n∏
i=1

UAi→BiEi ◦ P i
Ri−1Ei−1→AiRi

. (210)

Similarly, if the channel is given by V and the internal operations by the adversary are given byQi, then
the overall state on system B[n] is given by

σ[{Qi}ni=1] := TrRnEn

n∏
i=1

VAi→BiEi ◦ Qi
Ri−1Ei−1→AiRi

. (211)

Note that in both cases, the adversary is allowed to perform different updates P i and Qi at each step
depending on whether the channel is U or V .

Denote the set of all possible output states from Eq. (210) by

An := {ρ[{P i}ni=1] : P i ∈ CPTP(Ri−1Ei−1 : AiRi),∀Ri} (212)

and the set of all possible output states from Eq. (211) by

Bn := {σ[{Qi}ni=1] : Qi ∈ CPTP(Ri−1Ei−1 : AiRi), ∀Ri}. (213)
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Note that the dimension of the reference systems, which serve as the adversary’s internal memory, can
be arbitrarily large.

There are specific types of strategies that do not utilize the information from the environmental sys-
tems Ei, and for each update operation Pi,Qi (i ≥ 2), these strategies simply apply identity operations
with Ri = Ai+1 · · ·An. An illustration of such a strategy is depicted in Figure 4. We refer to these
simpler strategies as non-adaptive ones and denote the sets of all generated outputs as A ′

n and B′
n. It is

clear to see that these two sets are the images of the tensor product channels,

A ′
n = {N⊗n(ρn) : ρn ∈ D}, (214)

B′
n = {M⊗n(σn) : σn ∈ D}. (215)

Figure 4: Non-adaptive strategy for the quantum hypothesis testing for three uses of the channel, where
U and V are the Stinspring dialations of quantum channels N and M respectively, P and Q are any
operations controlled by the adversary, Id is the identity channel, Ri = Ai+1 · · ·An, and {Mn, I −Mn}
is a quantum measurement performed by the tester.

The adversarial quantum channel hypothesis testing is essentially to discriminate between these two
sets An and Bn. Define the type-I error and type-II error as follows:

α(An,Mn) := sup
ρn∈An

Tr[ρn(I −Mn)], (216)

β(Bn,Mn) := sup
σn∈Bn

Tr[σnMn]. (217)

The asymmetric hypothesis testing investigates the optimal exponent of the type-II error probability
decays when the type-I error is within a constant threshold ε, that is, to evaluate:

βε(An∥Bn) := inf
0≤Mn≤I

{β(Bn,Mn) : α(An,Mn) ≤ ε} . (218)

Since non-adaptive strategies are a specific type of adaptive strategy, we have the following inclusions

A ′
n ⊆ An and B′

n ⊆ Bn. (219)

This gives the relations for the type-I and type-II errros by

α(A ′
n,Mn) ≤ α(An,Mn) and β(B′

n,Mn) ≤ β(Bn,Mn). (220)
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So we have the general relation that

βε(A
′
n∥B′

n) = inf
0≤Mn≤I

α(A ′
n,Mn)≤ε

β(B′
n,Mn) ≤ inf

0≤Mn≤I
α(An,Mn)≤ε

β(Bn,Mn) = βε(An∥Bn), (221)

where the inequality holds because the right-hand side represents the infimum of a larger objective value
over a smaller feasible set.

6.2 Adversarial quantum Stein’s lemma

We will see in this section that the optimal exponent at which βε(An∥Bn) decays is precisely character-
ized by a new variant of quantum channel divergence. For this, we introduce the following notions.

Definition 35. (Minimum output quantum channel divergence.) Let D be a quantum divergence between
quantum states. Let N ∈ CPTP(A : B) and M ∈ CP(A : B). Define the corresponding minimum
output channel divergence by

Dinf(N∥M) := inf
ρ∈D(A)
σ∈D(A)

D(NA→B(ρA)∥MA→B(σA)). (222)

Define its regularized channel divergence by

Dinf,∞(N∥M) := lim
n→∞

1

n
Dinf(N⊗n∥M⊗n). (223)

The minimum output channel divergence captures a worst-case scenario where different test states
are chosen to minimize the distinguishability between the given channels. This concept has been pre-
viously examined in the context of quantum fidelity in [Wat18, Definition 3.57]. However, the more
general notion and its broader applications have yet to be thoroughly explored in the literature.

Remark 3 The minimum output channel divergence can be seen as a special case of the divergence
between two sets of quantum states. Let L(D) := {L(ρ) : ρ ∈ D} be the image of the set of density
operators under the linear map L. Then, by definition, we have the following

Dinf(N∥M) = D(N (D)∥M(D)). (224)

Remark 4 Note that the measured Rényi divergence coincides with the sandwiched Rényi divergence at
α ∈ {1/2,+∞}. Thus, by applying the superadditivity in Lemma 22 and the subadditivity in Lemma 27,
we conclude that the minimum output channel divergence is additive for these cases,

Dinf
S,1/2(N1 ⊗N2∥M1 ⊗M2) = Dinf

S,1/2(N1∥M1) +Dinf
S,1/2(N2∥M2) (225)

Dinf
max(N1 ⊗N2∥M1 ⊗M2) = Dinf

max(N1∥M1) +Dinf
max(N2∥M2), (226)

where the first equality recovers Watrous’ result [Wat18, Corollary 3.60].

With the notion of minimum output channel divergence, we can now present our main theorem for
adversarial quantum channel hypothesis testing as follows.

Theorem 36. (Adversarial quantum Stein’s lemma.) Let N ∈ CPTP andM ∈ CP. Let An and Bn be
the sets of quantum states generated by adaptive strategies in Eqs. (212) and (213). Similarly, let A ′

n and
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B′
n be the sets of quantum states generated by non-adaptive strategies in Eqs. (214) and (215). Then for

any ε ∈ (0, 1), it holds

lim
n→∞

− 1

n
log βε(An∥Bn) = lim

n→∞
− 1

n
log βε(A

′
n∥B′

n) = Dinf,∞(N∥M), (227)

where the Stein’s exponent on the right-hand side can be efficiently computed as per Remark 2. Conse-
quently, adaptive strategies used by the adversary offer no advantage over non-adaptive ones in adver-
sarial quantum channel hypothesis testing.

This result is proved by two parts. In the converse part, we prove that

lim inf
n→∞

− 1

n
log βε(An∥Bn) ≥ Dinf,∞(N∥M), (228)

by using a new chain rule property of quantum relative entropy. In the achievable part, we prove that

lim sup
n→∞

− 1

n
log βε(A

′
n∥B′

n) ≤ Dinf,∞(N∥M), (229)

by using the generalized AEP in Theorem 26. The complete proof is presented below.

6.2.1 Proof of the converse part

The proof of the converse part requires the following lemmas.

Lemma 37. (Convexity.) The sets {An}n∈N and {Bn}n∈N in Eqs. (212) and (213) are convex.

Proof. We prove the assumptions for {An}n∈N and the same reasoning works for {Bn}n∈N as well.
Let {P i}ni=1 with systems R1, . . . , Rn and {P̄ i}ni=1 with systems R1, . . . , Rn be two strategies and
λ ∈ [0, 1]. Note that we may assume both strategies have the same systems Ri as we can always increase
the dimension of the systems Ri by extending the action of the channel in an arbitrary way without
affecting the output. Let us now define another strategy { ¯̄P i}ni=1 as follows. Let ¯̄Ri = Ri ⊗ C for all
i = 1, . . . , n where C is a two-dimensional system. Then define

¯̄P1(·) = λP1(·)⊗ |0⟩⟨0|C + (1− λ)P̄1(·)⊗ |1⟩⟨1|C (230)

and for i ≥ 2, define

¯̄P i(X) = (P i ◦ C0(X))⊗ |0⟩⟨0|C + (P̄ i ◦ C1(X))⊗ |1⟩⟨1|C (231)

where C0(X) = ⟨0|CX|0⟩C and C1(X) = ⟨1|CX|1⟩C . Since C0, C1,P i, P̄ i are all CP maps, we know
that ¯̄P i is also a CP map. Moreover, if P i, P̄ i are trace-preserving, then ¯̄P i is also trace-preserving. It is
easy to check the following relations,

C0 ◦ ¯̄P1 = λP1 and C1 ◦ ¯̄P1 = (1− λ)P̄1, (232)

C0 ◦ ¯̄P i = P i ◦ C0 and C1 ◦ ¯̄P i = P̄ i ◦ C1, ∀i ≥ 2. (233)

Noting that TrC commutes with U as they are acting on different systems, we have

TrC ◦
n∏

i=1

U ◦ ¯̄P i = U ◦ Pn ◦ C0 ◦
n−1∏
i=1

U ◦ ¯̄P i + U ◦ P̄n ◦ C1 ◦
n−1∏
i=1

U ◦ ¯̄P i. (234)
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Also noting that C0 and C1 both commute with U as they are acting on different systems and using the
relations in Eqs. (232) and (233), we have

U ◦ Pn ◦ C0 ◦
n−1∏
i=1

U ◦ ¯̄P i = λU ◦ Pn ◦
n−1∏
i=1

U ◦ P i = λ

n∏
i=1

U ◦ P i, (235)

U ◦ P̄n ◦ C1 ◦
n−1∏
i=1

U ◦ ¯̄P i = (1− λ)U ◦ Pn ◦
n−1∏
i=1

U ◦ P̄ i = (1− λ)
n∏

i=1

U ◦ P̄ i. (236)

Taking these into Eq. (234), we have

Tr ¯̄RnEn
◦

n∏
i=1

U ◦ ¯̄P i = λ TrRnEn ◦
n∏

i=1

U ◦ P i + (1− λ) TrRnEn ◦
n∏

i=1

U ◦ P̄ i (237)

This shows that any mixture of the reduced states on B[n] by the strategies {P i}ni=1 and {P̄ i}ni=1 is also
given by the reduced state of another strategy { ¯̄P i}ni=1 which proves the convexity of An. ⊓⊔

The key technical tool for the proof of the converse part makes use of new chain rule properties
of quantum relative entropy. For classical probability distributions PXY and QXY we have the chain
rule [Cov99, Theorem 2.5.3]

D(PXY ∥QXY ) = D(PX∥QX) +
∑
x

PX(x)D(PY |X=x∥QY |X=x), (238)

where D is the Kullback-Leibler divergence. There is no known quantum analogue that exactly corre-
sponds to this chain rule. However, by relaxing the equality to the following inequality

D(PXY ∥QXY ) ≤ D(PX∥QX) + max
x

D(PY |X=x∥QY |X=x), (239)

quantum analogs for the Umegaki relative entropy were found in [FFRS20] and for the Belavkin-
Staszewski relative entropy in [FF21a]. We now demonstrate that the chain rule property also holds
in the reverse direction, providing the first quantum analog for

D(PXY ∥QXY ) ≥ D(PX∥QX) + min
x

D(PY |X=x∥QY |X=x). (240)

More specifically, by using the superadditivity in Lemma 24 we have the following chain rules,
which can also be seen as an enhancement of the data processing inequality under partial trace.

Lemma 38. (Chain rule.) Let α ∈ [1/2, 1). For any ρ ∈ D , σ ∈H+,N ∈ CPTP andM∈ CP, it holds

DM(NA→B(ρRA)∥MA→B(σRA)) ≥ DM(ρR∥σR) +Dinf
M (N∥M), (241)

DM,α(NA→B(ρRA)∥MA→B(σRA)) ≥ DM,α(ρR∥σR) +Dinf
M,α(N∥M). (242)

Proof. The proof utilizes the superadditivity of the divergence between two sets of quantum states, as
established in Lemma 24 and Lemma 22. To this end, we consider the following sets:

A1 = {ρR}, A2 = N (D), A3 = {NA→B(ρRA)}, (243)

B1 = {σR}, B2=M(D), B3 = {MA→B(σRA)}, (244)

and verify that they meet the required assumptions. We do this for {A1,A2,A3} and the same argument
works for {B1,B2,B3}. For any YB ∈ (A2)

◦
+, we have Tr[YBN (ρ)] ≤ 1 for any ρ ∈ D(A). This
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implies that N †(YB) ≤ IA, with N † being the adjoint map of N . Therefore, for any XR ∈ (A1)
◦
+ and

YB ∈ (A2)
◦
+, we have the following equations,

Tr[(XR ⊗ YB)NA→B(ρRA)] = Tr[(XR ⊗N †(YB))ρRA] (245)

≤ Tr[(XR ⊗ IA)(ρRA)] (246)

= Tr[XRρR] (247)

≤ 1. (248)

This implies that XR⊗YB ∈ (A3)
◦
+ and therefore (A1)

◦
+⊗(A2)

◦
+ ⊆ (A3)

◦
+. Applying the superadditivity

in Lemma 24 and noting that Dinf
M (N∥M) = DM(N (D)∥M(D)) (see Remark 3), we have the asserted

result in Eq. (241). The proof for Eq. (242) follows the same by the superadditivity in Lemma 22. ⊓⊔

Considering the multicopy case, we can get the chain rules for the Umegaki relative entropy and the
sandwiched Rényi divergence.

Lemma 39. (Chain rule.) Let α ∈ [1/2, 1). For any ρ ∈ D , σ ∈H+,N ∈ CPTP andM∈ CP, it holds

D(NA→B(ρRA)∥MA→B(σRA)) ≥ D(ρR∥σR) +Dinf,∞(N∥M), (249)

DS,α(NA→B(ρRA)∥MA→B(σRA)) ≥ DS,α(ρR∥σR) +Dinf,∞
S,α (N∥M). (250)

Proof. The result is derived by applying Lemma 38 to the multicopy channels and states, then taking the
regularization on both sides, and finally using Lemma 29. ⊓⊔

In the following, we introduce the notion of the amortized minimum output channel divergence and
show that it coincides with the regularized divergence, being an analog result for the best-case channel
divergence [FFRS20]. This, in turn, demonstrates the tightness of our chain rule properties.

Similar to the amortized channel divergence used in the existing literature [WBHK20], we can define
the minimum output version as follows.

Definition 40. Let D be a quantum divergence between states. LetN ∈ CPTP(A : B) andM∈ CP(A :

B). Then the amortized minimum output channel divergence is defined by

Dinf,amo(N∥M) := inf
ρ∈D(RA)
σ∈D(RA)

D(NA→B(ρRA)∥MA→B(σRA))− D(ρR∥σR). (251)

Lemma 41. Let α ∈ [1/2, 1). For any N ∈ CPTP(A : B),M∈ CP(A : B), it holds

Dinf,amo(N∥M) = Dinf,∞(N∥M), (252)

Dinf,amo
S,α (N∥M) = Dinf,∞

S,α (N∥M). (253)

Proof. We prove the result for the quantum relative entropy and the same argument works for the sand-
wiched Rényi divergence as well. Note that the chain rule property in Lemma 39 is equivalent to
Dinf,amo(N∥M) ≥ Dinf,∞(N∥M). Now we prove the other direction. For this, we will first show
the superadditivity of the amortized divergence under tensor product. That is,

Dinf,amo(N1 ⊗N2∥M1 ⊗M2) ≥ Dinf,amo(N1∥M1) +Dinf,amo(N2∥M2), (254)
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for any quantum channels N1 ∈ CPTP(A1 : B1), N2 ∈ CPTP(A2 : B2), CP mapsM1 ∈ CP(A1 : B1),
M2 ∈ CP(A2 : B2). To see this, let (ρRA1A2 , σRA1A2) be any feasible solution to the optimization on
the left-hand side of Eq. (254) and denote its corresponding objective value by

δ12 := D(N1 ⊗N2(ρRA1A2)∥M1 ⊗M2(σRA1A2))−D(ρR∥σR). (255)

Let ωRA2B1 = N1(ρRA1A2) and γRA2B1 = M1(σRA1A2). We can check that (ρRA1 , σRA1) and
(ωRA2B1 , γRA2B1) are feasible solutions to the amortized divergence on the right-hand side of Eq. (254),
respectively, with the corresponding objective values by

δ1 :=D(N1(ρRA1)∥M1(σRA1))−D(ρR∥σR) ≥ Dinf,amo(N1∥M1) (256)

δ2 :=D(N2(ωRA2B1)∥M2(γRA2B1))−D(ωRB1∥γRB1) ≥ Dinf,amo(N2∥M2). (257)

Noting that ωRB1 = N1(ρRA1) and γRB1 =M1(σRA1), we have δ12 = δ1 + δ2. This implies

δ12 ≥ Dinf,amo(N1∥M1) +Dinf,amo(N2∥M2). (258)

As this holds for any feasible solution (ρRA1A2 , σRA1A2), we have the asserted result in Eq. (254).
By trivilizing the reference system in the amortized divergence, we get Dinf,amo(N∥M) ≤ Dinf(N∥M).

Then we have

Dinf,amo(N∥M) ≤ 1

n
Dinf,amo(N⊗n∥M⊗n) ≤ 1

n
Dinf(N⊗n∥M⊗n), (259)

where the first inequality follows from Eq. (254). As the above holds for any n, we can take n→∞ on
the right-hand side and conclude that Dinf,amo(N∥M) ≤ Dinf,∞(N∥M). This completes the proof. ⊓⊔

Proof of the converse part

With the above lemmas, we are now ready to prove the converse part, that is, to show

lim inf
n→∞

− 1

n
log βε(An∥Bn) ≥ Dinf,∞(N∥M). (260)

Using the relation of hypothesis testing relative entropy and the Petz Rényi divergence in Lemma 13 and
the fact that DS,α(ρ∥σ) ≤ DP,α(ρ∥σ) [Tom16, Eq.(4.88)], we have for any α ∈ [1/2, 1) and ε ∈ (0, 1),

1

n
DH,ε(An∥Bn) ≥

1

n
DS,α(An∥Bn) +

1

n

α

α− 1
log

1

ε
. (261)

Denote the joint states before the n-th use of the channel by

ρ′n := Pn
Rn−1En−1→AnRn

◦
n−1∏
i=1

UAi→BiEi ◦ P i
Ri−1Ei−1→AiRi

, (262)

σ′
n := Qn

Rn−1En−1→AnRn
◦
n−1∏
i=1

VAi→BiEi ◦ Qi
Ri−1Ei−1→AiRi

. (263)

Then we have

ρ[{P i}ni=1] = TrRnEn ◦UAn→BnEn(ρ
′
n), (264)

σ[{Qi}ni=1] = TrRnEn ◦ VAn→BnEn(σ
′
n). (265)

By the relation in Eqs. (209), we have

DS,α

(
ρ[{P i}ni=1]∥σ[{Qi}ni=1]

)
= DS,α(NAn→Bn(TrRn(ρ

′
n))∥MAn→Bn(TrRn(σ

′
n))). (266)
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By using the chain rule in Lemma 39, we get

DS,α

(
ρ[{P i}ni=1]∥σ[{Qi}ni=1]

)
≥ DS,α(TrAnRn(ρ

′
n)∥TrAnRn(σ

′
n)) +Dinf,∞

S,α (N∥M). (267)

Note that for any Pn and Qn we always have

TrAnRn ◦Pn
Rn−1En−1→AnRn

= TrEn−1Rn−1 , (268)

TrAnRn ◦Qn
Rn−1En−1→AnRn

= TrEn−1Rn−1 . (269)

This gives

DS,α(TrAnRn(ρ
′
n)∥TrAnRn(σ

′
n)) = DS,α

(
ρ[{P i}n−1

i=1 ]∥σ[{Qi}n−1
i=1 ]

)
. (270)

Combining Eqs. (267) and (270), we have

DS,α

(
ρ[{P i}ni=1]∥σ[{Qi}ni=1]

)
≥ DS,α

(
ρ[{P i}n−1

i=1 ]∥σ[{Qi}n−1
i=1 ]

)
+Dinf,∞

S,α (N∥M). (271)

Using this relation n times, we get

DS,α

(
ρ[{P i}ni=1]∥σ[{Qi}ni=1]

)
≥ nDinf,∞

S,α (N∥M). (272)

As this relation holds for any update operations P i and Qi, we have

DS,α(An∥Bn) ≥ nDinf,∞
S,α (N∥M). (273)

Taking this into Eq. (261), we have

1

n
DH,ε(An∥Bn) ≥ Dinf,∞

S,α (N∥M) +
1

n

α

α− 1
log

1

ε
. (274)

By the convexity in Lemma 37 and the operational interpretation in Lemma 32, we have

lim inf
n→∞

− log
1

n
βε(An∥Bn) = lim inf

n→∞

1

n
DH,ε(An∥Bn) (275)

≥ Dinf,∞
S,α (N∥M) (276)

≥ Dinf,∞
M,α (N∥M), (277)

where the last inequality follows since DM,α(ρ∥σ) ≤ DS,α(ρ∥σ) for α ∈ [1/2, 1). As this holds for any
α ∈ [1/2, 1), we get

lim inf
n→∞

− log
1

n
βε(An∥Bn) ≥ sup

α∈[1/2,1)
Dinf,∞

M,α (N∥M) (278)

= Dinf,∞
M (N∥M) (279)

= Dinf,∞(N∥M) (280)

where the first equality follows from the continuitiy in Lemma 28 and the second equality follows from
the asymptotic equivalence in Lemma 29 by considering the image sets of the channels (note that check-
ing Assumption 25 for the image sets can be found in the following Lemma 42). This completes the
proof of the converse part.

6.2.2 Proof of the achievable part
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Lemma 42. The sets {A ′
n}n∈N and {B′

n}n∈N in Eqs. (214) and (215) satisfy Assumption 25.

Proof. First, the set of all density matrices D is convex and compact, so A ′
n is also convex and compact.

Since N⊗n and D are permutation invariant, we know that A ′
n is also permutation invariant. For any

N⊗m(ρm) ∈ A ′
m andN⊗k(ρk) ∈ A ′

k , we haveN⊗m(ρm)⊗N⊗k(ρk) = N⊗(m+k)(ρm⊗ρk) ∈ A ′
m+k.

This implies A ′
m ⊗A ′

k ⊆ A ′
m+k. The support function of A ′

n is given by

hA ′
n
(Xn) = sup

ρn∈D
Tr
[
XnN⊗n(ρn)

]
= sup

ρn∈D
Tr
[
(N⊗n)†(Xn)ρn

]
= λmax

(
(N⊗n)†(Xn)

)
. (281)

So for any Xm ∈H+ and Xk ∈H+, we have

hA ′
m+k

(Xm ⊗Xk) = λmax

(
(N⊗(m+k))†(Xm ⊗Xk)

)
(282)

= λmax

(
(N⊗m)†(Xm)⊗ (N⊗k)†(Xk)

)
(283)

= λmax

(
(N⊗m)†(Xm)

)
λmax

(
(N⊗k)†(Xk)

)
(284)

= hA ′
m
(Xm)hA ′

k
(Xk), (285)

where the third line follows by the multiplicativity of the maximum eigenvalue of tensor product oper-
ators. Finally, using Lemma 8, we know that (A ′

m)◦+ ⊗ (A ′
k)

◦
+ ⊆ (A ′

m+k)
◦
+
. This proves that {A ′

n}n∈N
satisfy all assumptions in Assumption 25. The same argument works for {B′

n}n∈N. ⊓⊔

Proof of the achievable part

Since the sets {A ′
n}n∈N and {B′

n}n∈N satisfy Assumption 25, we can apply the generalized AEP in
Theorem 26 and get

lim sup
n→∞

− 1

n
log βε(A

′
n∥B′

n) = lim sup
n→∞

1

n
DH,ε(A

′
n∥B′

n) (286)

= lim
n→∞

1

n
D(A ′

n∥B′
n) (287)

= lim
n→∞

1

n
Dinf(N⊗n∥M⊗n) (288)

= Dinf,∞(N∥M), (289)

where the first equality follows from Lemma 32, the second equality follows by applying the generalized
AEP in Theorem 26, the third equality follows from the relation in Eq. (224) and the last equality follows
by definition. This completes the proof of the achievable part.

6.3 Justification of the regularization in the Stein’s exponent

We provide an explicit example to demonstrate that the minimum output Umegaki channel divergence
can be strictly subadditive under tensor product channels. This shows that the regularization in the
adversarial quantum Stein’s lemma, as stated in Theorem 36, is necessary in general. Nevertheless, our
example shows that the regularized quantity can be approximated by Dinf(N⊗m∥M⊗m)/m from above
and Dinf

M (N⊗m∥M⊗m)/m from below and the approximation gets improved by increasing m.
This example is given by two qutrit quantum channels. Let N (·) = Tr[·]|ρ⟩⟨ρ| to be the replacer

channel with |ρ⟩ = (2|0⟩+|1⟩+2|2⟩)/3. LetM be the platypus channel [LLS+23, Eq. (170)],M(X) =
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M0XM †
0 +M1XM †

1 with Kraus operators

M0 =


√
s 0 0

0 0 0

0 1 0

 , M1 =

 0 0 0√
1− s 0 0

0 0 1

 . (290)

SinceM(I/3) = (s|0⟩⟨0|+(1−s)|1⟩⟨1|+2|2⟩⟨2|)/3 is a full rank state for all s ∈ (0, 1), the following
quantities are finite and can be evaluated by the QICS package [HSF24],

Dinf(N⊗m∥M⊗m) = inf
σm∈D

D(ρ⊗m∥M⊗m(σm)), (291)

Dinf
M (N⊗m∥M⊗m) = inf

σm∈D
DM(ρ

⊗m∥M⊗m(σm)). (292)

The numerical result is given in Figure 5. It shows a clear separation between Dinf(N⊗m∥M⊗m)/m
with m = 1, 2, 3 and s ∈ [0.01, 0.1] and also Dinf

M (N⊗m∥M⊗m)/m with the same parameter range,
confirming the strict subadditivity of the minimum output Umegaki channel divergence and the strict
superadditivity of the minimum output measured channel divergence. Moreover, as we increase the
number of m, the lower and upper bounds provide better approximation to D∞(N∥M).
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Figure 5: Nonadditivity of the minimum output channel divergences.

As a remark, if the adversary uses tensor product states as channel inputs, we can similarly prove that
the Stein’s exponent is given by Dinf(N∥M). Therefore, the strict subadditivity implies that correlations
in the adversary’s input can indeed help to reduce distinguishability against the tester. However, as stated
in Theorem 36, such an advantage cannot be further enhanced if the adversary uses more complicated
adaptive strategies.

7 Application 3: a relative entropy accumulation theorem

Consider two states ρR0 and σR0 and quantum operations Ni ∈ CPTP(Ri−1 : RiAi) and Mi ∈
CP(Ri−1 : RiAi) that are applied sequentially from i = 1 to i = n and generating the systems Ai.
The systems Ri should be seen as an internal memory system that we do not control. Can we bound the
operationally relevant divergence between the obtained states as the sum of the contributions of each
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step? Here, more specifically, we consider the hypothesis testing divergence, which can be seen as a
smoothed Dmin divergence, and we are looking for a lower bound of the form:

DH,ε

(
TrRn ◦

n∏
i=1

Ni(ρR0)

∥∥∥∥TrRn ◦
n∏

i=1

Mi(σR0)

)
?
≥

n∑
i=1

D(TrRi ◦Ni∥TrRi ◦Mi)− o(n), (293)

for some appropriate divergence D between quantum operations. An illustration of this setting is depicted
in Figure 6. A dual question for smoothed Dmax was raised as an open question in [MFSR22].

Figure 6: Illustration of the setting for the relative entropy accumulation theorem.

Theorem 43. (Relative entropy accumulation.) Let ρR0 ∈ D(R0), σR0 ∈ D(R0) and quantum opera-
tions Ni ∈ CPTP(Ri−1 : RiAi) andMi ∈ CP(Ri−1 : RiAi) for i ∈ {1, . . . , n}. Let ε ∈ (0, 1) and
assume for all i ∈ {1, . . . , n} and m ≥ 2

∀α ∈ [1/2, 1] : DP,3/2(ρ
(α)
m ∥σ(α)

m ) ≤ C

4
m and ∀σ ∈ D(Ri−1) : log Tr(Mi(σ)) ≤

C

4
, (294)

where ρ
(α)
m , σ

(α)
m are outputs of the channels (TrRi ◦Ni)

⊗m, (TrRi ◦Mi)
⊗m (respectively) and achieve

the minimum DP,α(ρ
(α)
m ∥σ(α)

m ) = Dinf
P,α((TrRi ◦Ni)

⊗m∥(TrRi ◦Mi)
⊗m).

Then we have

DH,ε

(
TrRn ◦

n∏
i=1

Ni(ρR0)

∥∥∥∥TrRn ◦
n∏

i=1

Mi(σR0)

)
(295)

≥
n∑

i=1

Dinf,∞(TrRi ◦Ni∥TrRi ◦Mi)− C ′n2/3 log n log1/3
1

ε
, (296)

where C ′ is a constant that only depends on d = maxdimAi and C.

Proof. We start as usual by bounding the hypothesis testing relative entropy with a Rényi divergence of
order α ∈ (0, 1):

DH,ε

(
TrRn ◦

n∏
i=1

Ni(ρR0)

∥∥∥∥TrRn ◦
n∏

i=1

Mi(σR0)

)
(297)

≥ DS,α

(
TrRn ◦

n∏
i=1

Ni(ρR0)

∥∥∥∥TrRn ◦
n∏

i=1

Mi(σR0)

)
+

α

α− 1
log(1/ε). (298)
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We can now use the chain rule in Lemma 39 to bound

DS,α

(
TrRn ◦

n∏
i=1

Ni(ρR0)

∥∥∥∥TrRn ◦
n∏

i=1

Mi(σR0)

)
(299)

≥ DS,α

(
TrRn−1 ◦

n−1∏
i=1

Ni(ρR0)

∥∥∥∥TrRn−1 ◦
n−1∏
i=1

Mi(σR0)

)
+Dinf,∞

S,α (TrRn ◦Nn∥TrRn ◦Mn) (300)

≥
n∑

i=1

Dinf,∞
S,α (TrRi ◦Ni∥TrRi ◦Mi) (301)

=
n∑

i=1

Dinf,∞
M,α (TrRi ◦Ni∥TrRi ◦Mi) (302)

≥
n∑

i=1

1

m
Dinf

M,α((TrRi ◦Ni)
⊗m∥(TrRi ◦Mi)

⊗m) (303)

where m ≥ 2 and we used Eq. (96) for the equality and the superadditivity of DM,α in Lemma 24
for the last inequality. Note that both of these results were applied for the family of states Am =
(TrRi ◦Ni)

⊗m(D) and Bm = (TrRi ◦Mi)
⊗m(D) which satisfies Assumption 25 as proved in Lemma 42.

Observe that assumption (294) implies assumption (∗) as log Tr(M⊗m
i (σ)) ≤ m log λmax(M†

i (I)) ≤
C
4 m. As a result, Lemma 31 gives

1

m
Dinf

M,α((TrRi ◦Ni)
⊗m∥(TrRi ◦Mi)

⊗m) (304)

≥ Dinf,∞(TrRi ◦Ni∥TrRi ◦Mi)− (1− α)(2 + C)2m− 2(d2 + d) log(m+ d)

m
, (305)

for 1− 1
(2+C)m < α < 1. Let us now choose 1−α = 8d2 logm

(2+C)2m2 and assume that m ≥ max

(
d,
(
16d2

2+C

)2)
so that the condition α ≥ 1− 1

(2+C)m is satisfied and log(m+ d) ≤ 2 logm.
Putting everything together, we get

DH,ε

(
TrRn ◦

n∏
i=1

Ni(ρR0)

∥∥∥∥TrRn ◦
n∏

i=1

Mi(σR0)

)
(306)

≥
(

n∑
i=1

Dinf,∞(TrRi ◦Ni∥TrRi ◦Mi)

)
− n

16d2 logm

m
− (2 + C)2m2

8d2 logm
log

1

ε
(307)

We now choose m =
(

64d4n
(2+C)2 log 1

ε

)1/3
. With this choice

DH,ε

(
TrRn ◦

n∏
i=1

Ni(ρR0)

∥∥∥∥TrRn ◦
n∏

i=1

Mi(σR0)

)
(308)

≥
(

n∑
i=1

Dinf,∞(TrRi ◦Ni∥TrRi ◦Mi)

)
− C ′n2/3 log n log1/3

1

ε
, (309)

for a constant C ′ that only depends on C and d. ⊓⊔

As a corollary, we get a weak form of the entropy accumulation statement for the smoothed max-
entropy obtained in [MFSR22]. We recall that the smoothed max-entropy is defined as

Hε
max(B|C)ρ = log inf

ρ̃BC∈H+(BC)
Tr(ρ̃)≤1

F (ρ,ρ̃)≥1−ε

sup
σC∈D(C)

∥∥∥∥ρ̃ 1
2
BC idB ⊗ σ

1
2
C

∥∥∥∥2
1

. (310)
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Corollary 44. (Hmax-entropy accumulation.) Let Ni ∈ CPTP(R′
i−1 : BiCiR

′
i) be quantum channels

and ρR′
0
∈ D(R0) be a quantum state. Define the state ρB1...BnC1...CnR′

n
=
∏n

i=1Ni(ρR′
0
). We have for

ε ∈ [0, 1/2],

Hε
max(B1 . . . Bn|C1 . . . Cn)ρ ≤

n∑
i=1

sup
ω∈D(R′

i−1)

H(Bi|Ci)N (ω) +Kn2/3 log n log1/3
1

ε
, (311)

where K is a constant only depending on maxi dimBiCi.

Remark 5 The second order term we achieve with our proof technique is worse than the one achieved
in [DFR20] and [MFSR22]. In addition, the statement of [MFSR22] is stronger in that it also includes
conditioning on the system R′

i provided a non-signalling assumption is satisfied. We still believe that our
new proof technique, which is more naturally adapted to find upper bounds on Hmax (as opposed to the
techniques of [MFSR22] which naturally apply to Hmin) could lead to insights and improvements for
the applications of entropy accumulation. However, this is outside the scope of this paper and we leave
it for future work.

Proof. We apply Theorem 43 with the following replacements: letting C ′
i be isomorphic to Ci, we set

Ri ← R′
iC

′
i+1 . . . C

′
n for i = 0 to n, Ai ← BiCi for i = 1 to n, Ni ← Ni ⊗ TrC′

i
⊗IC′

i+1...C
′
n

(here,
I refers to the identity map) and finallyMi is defined asMi(XR′

i−1C
′
i...C

′
n
) = idBi ⊗ XCiC′

i+1...C
′
n
⊗

|0⟩⟨0|R′
i
, where |0⟩⟨0|R′

i
is an arbitrary fixed state in D(R′

i).
Theorem 43 gives for the left hand side of (295) and any σ ∈ D(C1 . . . Cn):

DH,ε

(
TrRn ◦

n∏
i=1

Ni(ρR′
0
⊗ σC′

1...C
′
n
)

∥∥∥∥TrRn ◦
n∏

i=1

Mi(|0⟩⟨0|R′
0
⊗ σC′

1...C
′
n
)

)
(312)

= DH,ε(ρB1...BnC1...Cn∥idB1...Bn ⊗ σC1...Cn). (313)

As the right hand side of (295) does not depend on σ, we can take an infimum over σ and use Proposi-
tion 53 to get the following

inf
σ

DH,ε

(
TrRn ◦

n∏
i=1

Ni(ρR′
0
⊗ σC′

1...C
′
n
)

∥∥∥∥TrRn ◦
n∏

i=1

Mi(|0⟩⟨0|R′
0
⊗ σC′

1...C
′
n
)

)
(314)

≤ −H
√
2ε

max(B1 . . . Bn|C1 . . . Cn)ρ. (315)

On the right hand side of (295), we have terms of the form Dinf,∞(TrRi ◦Ni∥TrRi ◦Mi). Note that
for ω ∈ D(R′

i−1C
′
i . . . C

′
n), we have (TrRi ◦Ni)(ω) = Ni(ωR′

i−1
) and (TrRi ◦Mi)(ω) = idBi ⊗ ωCi .

As a result, Dinf(TrRi ◦Ni∥TrRi ◦Mi) = infω∈D(R′
i−1)
−H(Bi|Ci)Ni(ω), where we used the fact that
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−H(B|C)ρ = infσ∈D(C)D(ρBC∥idB ⊗ σC). We now need to evaluate the regularization:

Dinf,∞(TrRi ◦Ni∥TrRi ◦Mi) (316)

= inf
m≥1

1

m
inf

ω∈D((R′
i−1)

⊗m)

σ∈D((Ci...Cn)⊗m)

D(N⊗m
i (ω)∥idBi,1...B1,m ⊗ σCi,1...Ci,m) (317)

= − sup
m≥1

sup
ω

1

m
H(Bi,1 . . . Bi,m|Ci,1 . . . Ci,m)N⊗m

i (ω) (318)

≥ − sup
m≥1

sup
ω

1

m

m∑
j=1

H(Bi,j |Ci,j)Ni(ωR′
i,j

) (319)

= − sup
ω∈D(R′

i−1)

H(Bi|Ci)Ni(ω), (320)

which shows that in this case, the regularization is not needed. In order to apply Theorem 43, we need
to check condition (294). First, we have for any ω ∈ D(R′

i) Tr(Mi(ω)) = dimBi. In addition, as in
the previous calculation, for α ∈ [1/2, 1], we have

Dinf
P,α((TrRi ◦Ni)

⊗m∥(TrRi ◦Mi)
⊗m) (321)

= inf
ω∈D((R′

i−1)
⊗m)

σ∈D((Ci...Cn)⊗m)

DP,α(N⊗m
i (ωR′

i−1,1...R
′
i−1,m

)∥idBi,1...B1,m ⊗ σCi,1...Ci,m) (322)

= − sup
ω

H↑
P,α(Bi,1 . . . Bi,m|Ci,1 . . . Ci,m)N⊗m

i (ω), (323)

using the notation H↑
P,α(D|E)ρ = − infσ∈D(E)DP,α(ρDE∥idD ⊗ σE) from [TBH14]. It is shown

in [TBH14, Lemma 1], that an explicit choice of σ achieves this infimum namely σ
(α)
E =

(TrD ραDE)1/α

Tr(TrD ραDE)1/α
.

But in Lemma 52 (Appendix E), we showed that for this choice DP,3/2(ρDE∥idD⊗σ(α)
E ) ≤ 4 log dimD.

Applying this to the state ρ = (TrRi ◦Ni)
⊗m(ω), an optimal choice for σ in (322) is given by σ

(α)
m =

(Tr
B⊗m
i

ρα)1/α

Tr(Tr
B⊗m
i

ρα)1/α
. We get that for any ω ∈ D(R⊗m

i−1),

DP,3/2((TrRi ◦Ni)
⊗m(ω)∥id⊗m

Bi
⊗ σ(α)

m ) ≤ 4m log dimBi. (324)

This means that choosing C = 16maxi log dimBi satisfies condition (294). ⊓⊔

8 Application 4: efficient bounds for quantum resource theory

The generalized quantum Stein’s lemma [BP10, HY24, Lam24] has found broad applications in quan-
tum resource theory. However, the optimal Stein exponents derived in these works are often challenging
to compute, limiting their applicability. In contrast, our new generalized Stein’s lemma, presented in
Theorem 33, offers computational efficiency. To leverage this advantage, even when the task of interest
does not directly satisfy Assumption 25, one can follow the general methodology of relaxing the set of
interest to one that does, particularly regarding the polar assumption in (A.4). For example, in entan-
glement theory, the set of separable states can be relaxed to the Rains set, which satisfies all necessary
assumptions. Similarly, in fault-tolerant quantum computing, the set of stabilizer states can be relaxed to
the set of states with non-positive mana, which also fulfills the required conditions.

In the following, we provide several examples to illustrate this idea. Generally, this approach can be
applied by verifying the conditions of the relevant theory and performing the necessary relaxations when
required. As a result, we anticipate that this approach has the potential for far-reaching applications
beyond the specific cases discussed here.
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8.1 Quantum entanglement distillation

One of the most significant applications of the generalized Stein’s lemma is in entanglement distillation,
an essential quantum information processing task that involves converting multiple copies of noisy en-
tangled states into a smaller number of Bell states. The distillable entanglement of a bipartite state ρAB ,
denoted by ED,Ω(ρAB), represents the maximum number of Bell states that can be extracted from the
given state with asymptotically vanishing error under the operation class Ω. It has been established that
the distillable entanglement under asymptotically non-entanglement generating operations, denoted by
ED,ANE, is given by the regularized relative entropy of entanglement [BP10],

ED,ANE(ρAB) = D∞(ρAB∥SEP) := lim
n→∞

1

n
D(ρ⊗n

AB∥SEP(An : Bn)) (325)

where SEP(An : Bn) denotes the set of all separable states between H⊗n
A and H⊗n

B . Evaluating this
quantity is hard in general, as it involves a limit as well as the separability problem, which is known to
be computationally hard [Gur03].

Here, we can utilize our generalized AEP to derive an efficient lower bound for D∞(ρAB∥SEP).
Note that a frequently-used relaxation of SEP is given by the Rains set [Rai01, ADMVW02] 6

Rains(A : B) :=
{
σ ∈H+(AB) : ∥σTB∥1 ≤ 1

}
. (326)

We can show that it satisfies Assumption 25. This is because we have, by the SDP duality, that

hRains(ω) = sup
σ∈Rains(A:B)

Tr[ωσ] = inf
γ≥ω
∥γTB∥∞, (327)

where ∥ · ∥∞ is the spectral norm. By the multiplicativity of ∥ · ∥∞ we can easily check that hRains is
sub-multiplicative under tensor product, which is equivalent to the polar assumption (A.4) by Lemma 8.
The rest of assumptions can also be easily verified.

Therefore, we have the relaxation

D∞(ρAB∥SEP) ≥ D∞(ρAB∥Rains), (328)

where the right-hand side known as the regularized Rains bound can be efficiently estimated as discussed
in Remark 2 by considering An = {ρ⊗n} and Bn = Rains(A[n] : B[n]) which has efficient SDP
representations [FWTD19].

Similar to the regularized relative entropy of entanglement, the regularized Rains bound has the
operational meaning that it is the distillable entanglement under Rains-preserving operations ED,Rains,
that is, [RFWG19]

ED,Rains(ρAB) = D∞(ρAB∥Rains). (329)

This marks the first time that an operational regularized entanglement measure has been shown to be
efficiently computable, even when expressed as a regularized formula, beyond zero-error settings. Pre-
vious work in [LMR24] studied the zero-error entanglement cost under PPT operations and proved that
it is efficiently computable despite the absence of a closed-form formula.

As the Rains-preserving operations is a superset of the local operation and classical communication
(LOCC) operations, the regularized Rains bound also gives an upper bound on the distillable entangle-
ment under LOCC operations ED,LOCC, that is,

ED,LOCC(ρAB) ≤ D∞(ρAB∥Rains) ≤ ED,ANE(ρAB) (330)

This improves the best known efficiently computable bound for ED,LOCC as well.

6 The set of PPT states does not satisfy Assumption 25, see discussion after Eq. (334).
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8.2 Magic state distillation

The above argument for entanglement distillation also applies to magic states, which is a key resource
for fault-tolerant quantum computing [BK05, VMGE14, FL20]. The task of magic state distillation aims
to extract as many copies of the target magic state as possible with asymptotically vanishing error. The
distillable magic is denoted by MD,Ω, where Ω represents the set of allowed operations. Typically, the
most natural choice of operations involves stabilizer operations, and the corresponding distillable magic
is denoted by MD,STAB. However, characterizing this set of operations is challenging.

Motivated by the idea of the Rains bound from entanglement theory, Wang et al. [WWS20] relaxed
the set of all stabilizer states to a set of sub-normalized states with non-positive mana,W(H) := {σ ∈
H+(H) : ∥σ∥W,1 ≤ 1}, where ∥ · ∥W,1 denotes the Wigner trace norm. Based on the set W , Wang et
al. introduced a magic measure D(ρ∥W), called thauma, and proved that it serves as an upper bound for
the distillable magic under stabilizer operations, that is,

MD,STAB(ρ) ≤ D(ρ∥W)c(T ), (331)

where c(T ) is a constant that depends on the target magic state T .
Here, we can verify that W satisfies our Assumption 25. Applying the generalized AEP, we can

obtain an improved bound through regularization while keeping the computational efficiency.
To see this, it is straightforward to show that the support function ofW is given by

hW(ω) = sup
σ∈W

Tr[ωσ] = inf
γ≥ω
∥γ∥W,∞, (332)

where the ∥ · ∥W,∞ is the Wigner spectral norm and the second equality follows from the SDP duality.
Since ∥ · ∥W,∞ is multiplicative under tensor product, we can verify that the support function hW is sub-
multiplicative under tensor product as well. Hence, the polar setW◦ is closed under tensor product by
Lemma 8, and the remaining assumptions in Assumption 25 can also be verified. Then, we can consider
the regularization and get

MD,STAB(ρ) ≤ D∞(ρ∥W)c(T ), (333)

where D∞(ρ∥W) is the reguarlized thauma which remains efficiently computable by applying Remark 2
with An = {ρ⊗n} and Bn = W(H⊗n). This improves the best-known estimation of magic state
distillation under stablizer opeations.

8.3 Entanglement cost for quantum states and channels

The study of entanglement cost is dual to the task of entanglement distillation. Here, the goal is to prepare
a given quantum state using the fewest possible Bell states. The entanglement cost of a quantum state,
denoted as EC,Ω, is the minimum number of Bell states required to prepare one copy of this state under
a class of operations Ω. Of particular interest is the set of LOCC operations. It is known that computing
EC,LOCC is NP-hard in general [Hua14, Theorem 1]. Therefore, finding efficiently computable lower
and upper bounds to estimate EC,LOCC is of fundamental importance. Here, we focus on deriving lower
bounds, which indicate that no matter what preparation strategies are used, the amount of entanglement
consumed cannot be smaller than this value.

There are several lower bounds in the literature, but they are unsatisfactory for different reasons. One
such lower bound is given by the regularized PPT-relative entropy of entanglement [Hay17, Eq. (8.235)],

EC,LOCC(ρ) ≥ D∞(ρ∥PPT) := lim
n→∞

1

n
D(ρ⊗n∥PPT(An : Bn)), (334)

which is difficult to evaluate due to its regularization. Note that the PPT set does not satisfy the as-
sumption (A.4) and therefore cannot directly apply Remark 2. A counter-example can be given by the
projector on the C3 ⊗ C3 antisymmetric subspace, denoted as ρa. Since the support function hCPPT(·) is
given by a semidefinite program, we find numerically that hPPT((ρ

a)⊗2)− hPPT(ρ
a)2 ≈ 0.0093 > 0.
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A single-letter lower bound for entanglement cost is provided by the quantum squashed entangle-
ment [CW04], but its computability remains uncertain due to the unbounded dimension of the extension
system. Wang and Duan have proposed two single-letter SDP lower bounds in separate works:

EWD,1(ρAB) := − logmaxTrΠρVAB s.t. ∥V TB
AB ∥1 = 1, VAB ≥ 0, [WD17b] (335)

EWD,2(ρAB) := − logmin ∥Y TB
AB ∥∞ s.t. − YAB ≤ ΠTB

ρ ≤ YAB. [WD17a] (336)

It has been shown that for any ρ ∈ D(AB),

max
{
EWD,1(ρ), EWD,2(ρ)

}
≤ D∞(ρ∥PPT) ≤ EC,LOCC(ρ). (337)

By the definition of min-relative entropy and the Rains set, it is clear that EWD,1 can be written as 7

EWD,1(ρAB) = Dmin(ρAB∥Rains(A : B)). (338)

After a detailed examination of the dual program for EWD,2, we can also reformulate it in a comparable
structure by introducing an appropriate set of operators.

Lemma 45. For any ρ ∈ D(AB), it holds

EWD,2(ρAB) = Dmin(ρAB∥WD(A : B)), (339)

with the set of Hermitian operators defined by

WD(A : B) :=
{
σ ∈H (AB) : ∃Y ∈H (AB), s.t. − Y ≤ σTB ≤ Y, ∥Y TB∥1 ≤ 1

}
. (340)

Proof. Using the Lagrangian method, we have the dual SDP of EWD,2 as

EWD,2(ρ) = − logmax TrΠρ(V − F )TB s.t.

V + F = (W −X)TB , Tr(W +X) ≤ 1, V, F,W,X ≥ 0. (341)

Let (V − F )TB = σ, V + F = Y . By the definition of Dmin and CWD, we have the desired result. ⊓⊔

As discussed above, both SDP bounds EWD,1 and EWD,2 are essentially entanglement measures
induced by the min-relative entropy. However, a significant limitation of these bounds is that they vanish
for any full-rank state.

Proposition 46. For any full rank state ρ ∈ D(AB), it holds

EWD,1(ρ) = EWD,2(ρ) = 0. (342)

Proof. If ρAB is full rank, then Πρ = IAB and thus

EWD,1(ρAB) = − logmax
{
TrσAB : σAB ≥ 0, ∥σTB

AB∥1 ≤ 1
}
. (343)

It is clear that for any feasible solution σAB it holds that TrσAB = TrσTB
AB ≤ ∥σ

TB
AB∥1 ≤ 1. On the

other hand, there is a feasible solution σAB = IAB/|AB| such that TrσAB = 1. Thus the maximization
is taken at TrσAB = 1 and thus EWD,1(ρAB) = 0. Similarly, given full rank ρAB , it holds

EWD,2(ρAB) = − logmax
{
TrσAB : σ, Y ∈H (AB),−YAB ≤ σTB

AB ≤ YAB, ∥Y TB∥1 ≤ 1
}
. (344)

Then for any feasible solutions σAB, YAB , it holds TrσAB = TrσTB
AB ≤ TrYAB = TrY TB

AB ≤
∥Y TB∥1 ≤ 1. On the other hand, considering the feasible solution σAB = YAB = IAB/|AB|, we
have TrσAB = 1. Thus the maximization is taken at TrσAB = 1 and EWD,2(ρAB) = 0. ⊓⊔

7 The original definition of EWD,1 imposes the condition ∥V TB
AB ∥1 = 1. However, it is equivalent to optimize over the condition

∥V TB
AB ∥1 ≤ 1, as the optimal solution can always be chosen at the boundary.
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Recently, Wang et al. introduced the PPTk set [WJZ23] as

PPTk(A : B) :=
{
σ ∈H+(AB) : Tr fk(σ) ≤ 1

}
, (345)

where f(σ) := |σTB | and k ∈ N+. Building on this set, the authors introduced an efficiently computable
lower bound for entanglement cost [WJZ23],

EC,LOCC(ρAB) ≥ EWJZ(ρAB) := DS,1/2(ρAB∥PPTk(A : B)). (346)

In the following, we show that PPTk satisfies Assumption 25 and thus we can apply our Remark 2 to
get an improved bound.

Lemma 47. Let k ≥ 2. The PPTk set defined in Eq. (345) satisfies Assumption 25.

Proof. By the SDP duality, we have the support function

hPPTk
(ω) = inf

{
∥γTB

k ∥∞ : γ1 ≥ ω, −γi+1 ≤ γTB
i ≤ γi+1, ∀i ∈ {1, 2, · · · , k − 1}

}
. (347)

Then for any ω1, ω2, assume their optimal solutions in the dual program are respectively given by Xi

and Yi for all i ∈ {1, 2, · · · , k}. Then we have X1 ⊗ Y1 ≥ ω1 ⊗ ω2. Since −Xi+1 ≤ XTB
i ≤ Xi+1 and

−Yi+1 ≤ Y TB
i ≤ Yi+1, we have −I ≤ X

−1/2
i+1 XTB

i X
−1/2
i+1 ≤ I and −I ≤ Y

−1/2
i+1 Y TB

i Y
−1/2
i+1 ≤ I where

the inverses are taken on the supports. This gives −I ≤ X
−1/2
i+1 XTB

i X
−1/2
i+1 ⊗ Y

−1/2
i+1 Y TB

i Y
−1/2
i+1 ≤ I

which is equivalent to −Xi+1 ⊗ Yi+1 ≤ XTB
i ⊗ Y TB

i ≤ −Xi+1 ⊗ Yi+1. So {Xi ⊗ Yi}i is a feasible
solution to the dual program of hPPTk

(ω1⊗ω2). By the multiplicativity of the infinity norm under tensor
product, we know that hPPTk

is sub-multiplicative under tensor product. This proves that PPTk satisfies
assumption (A.4) by Lemma 8. The rest of assumptions can also be easily checked. ⊓⊔

Theorem 48. Let ρ ∈ D(AB) and k ≥ 2. Let (∗) = max {EWD,1(ρ), EWD,2(ρ), EWJZ(ρ)} represent
the previously known bounds. Then it holds

(∗) ≤ DM(ρ∥PPTk) ≤ D∞(ρ∥PPTk) ≤ D∞(ρ∥PPT) ≤ EC,LOCC(ρ), (348)

Moreover, both DM(ρ∥PPTk) and D∞(ρ∥PPTk) can be efficiently computed.

Proof. It has been shown that [WJZ23, Corollary 4],

PPT(A : B) ⊆ PPTk(A : B) ⊆ · · · ⊆ Rains(A : B). (349)

It is also clear from their definitions that PPT2(A : B) ⊆WD(A : B). This implies

PPT(A : B) ⊆ PPTk(A : B) ⊆ · · ·PPT2(A : B) ⊆WD(A : B) ∩ Rains(A : B). (350)

Therefore, the first two inequalities of the asserted result follow from the relation of divergences in
Lemma 16 and the relation of sets in Eq. (350). The second inequality follows from the superadditivity
in Lemma 24 and the asymptotic equivalence in Lemma 29. The third inequality follows from the
relation in Eq. (350). The last equality is known from Eq. (337). The computability of DM(ρ∥PPTk) and
D∞(ρ∥PPTk) follows from Lemma 47 and Remark 2. ⊓⊔

Remark 6 Following the same argument in [WJZ23], we can show that the new measures DM(ρ∥PPTk)
and D∞(ρ∥PPTk) also satisfy the properties such as normalization, faithfulness and (super-)additivity.
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Besides the bounds mentioned, which are established on PPT, there is another efficiently computable
lower bound on EC,LOCC given by Lami and Regula in [LR23],

ELR(ρ) := log sup
{
TrXρ : ∥XTB∥∞ ≤ 1, ∥X∥∞ = Tr[Xρ]

}
. (351)

In the following, we compare our new bounds with previously established ones through several
examples, including Isotropic states and Werner states. To the best of our knowledge, the entanglement
costs for these states remain unresolved. Additionally, we use randomly generated quantum states to
showcase the broad applicability and improvement of our bound across unstructured quantum states. In
all cases, our experiments clearly demonstrate the superiority of our bound over existing ones.

Example 1 (Isotropic states and Werner states.) The Isotropic state is defined by a convex mixture of the
maximally entangled state and its orthogonal complement,

ρI,p := p|Φ⟩⟨Φ|+ 1− p

d2 − 1
(I − |Φ⟩⟨Φ|), (352)

where |Φ⟩ = 1√
d

∑d
i=1 |ii⟩ is the d-dimensional maximally entangled state. The PPT-relative entropy of

entanglement for ρI,p and its regularization are given by [Rai98, Theorem 7]

D∞(ρI,p∥PPT) = D(ρI,p∥PPT) =

0 if 0 ≤ p ≤ 1
d ,

log d+ p log p+ (1− p) log 1−p
d−1 if 1

d ≤ p ≤ 1.
(353)

The Werner state is defined by a convex mixture of the normalized projectors on the symmetric (ρs) and
anti-symmetric (ρa) subspaces,

ρW,p := (1− p)ρs + pρa =
1− p

d(d+ 1)
(I + S) +

p

d(d− 1)
(I − S), (354)

where S =
∑d

i,j=1 |ij⟩⟨ji| is the SWAP operator of dimension d. The regularized PPT-relative entropy
of entanglement for ρW,p is given by [AEJ+01]

D∞(ρW,p∥PPT) =


0, if 0 ≤ p ≤ 1

2 ,

1− h(p), if 1
2 < p ≤ d+2

2d ,

log d+2
d + (1− p) log d−2

d+2 , if p > d+2
2d .

(355)

Note that both the Isotropic states and the Werner states are full-rank states for any p ∈ (0, 1). As a result,
the previous bounds EWD,1 and EWD,2 reduce to zero, as shown in Proposition 46. We then compare our
new bound DM(ρ∥PPT2) with the previously established bounds EWJZ [WJZ23], ELR [LR23] and the
analytical bound D∞(ρ∥PPT) in Figure 7. It turns out that DM(ρ∥PPT2) coincides with the analytical
bound D∞(ρ∥PPT) for both cases, significantly improving the numerical bounds EWJZ and ELR.
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Measured relative entropy: figures
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Figure 7: Comparison of the new lower bound DM(ρ∥PPT2) with previous bounds EWJZ [WJZ23],
ELR [LR23] and D∞(ρ∥PPT) [Rai98, AEJ+01] for (a) Isotropic states and (b) Werner states. The
horizontal axis is the state parameter p and the vertical axis is the value of the entanglement measure.

Example 2 (Random quantum states.) Since DM(ρ∥PPT2) has been proved to be better than EWJZ in
general, we focus our comparison here with ELR [LR23] by generating random bipartite states according
to the Hilbert-Schmidt measure, with varying ranks. For each rank, we generate 500 quantum states of
dimension 3 ⊗ 3. The comparison is presented in Figure 8. It is evident that DM(ρ∥PPT2) outperforms
ELR in most cases, particularly for higher-rank states.
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Figure 8: Comparison of the new bound DM(ρ∥PPT2) with the previously known bound ELR [LR23]
for randomly generated quantum states with different ranks.
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Similar to the entanglement cost for quantum states, the entanglement cost of a quantum channel,
denoted by EC,LOCC(N ), represents the minimal rate at which entanglement (between the sender and
receiver) is required to simulate multiple copies of the channel, given the availability of free classical
communication. It is known that [BBCW13]

EC,LOCC(N ) ≥ sup
ρ∈D(AA′)

EC,LOCC(NA→B(ρAA′)), (356)

where system HA′ is isomorphic to system HA. Wang et al. introduced a lower bound for the entangle-
ment cost of a quantum channel in [WJZ23],

EC,LOCC(N ) ≥ EWJZ(N ) ≥ EWJZ(NA→B(ΦAA′)) (357)

where EWJZ(N ) := supρ∈D(AA′)EWJZ(NA→B(ρAA′)) and ΦAA′ is the maximally entangled state. This
lower bound has been used to demonstrate that the resource theory of entanglement is irreversible for
amplitude damping channels.

Specifically, the amplitude damping channel is defined by

Nad(ρ) = E0ρE
†
0 + E1ρE

†
1, (358)

with Kraus operators E0 = |0⟩⟨0| + √1− γ|1⟩⟨1| and E1 =
√
γ|0⟩⟨1|. Its quantum capacity, i.e., the

maximal rate at which entanglement can be generated from the channel, is known as [GF05]

Q(Nad) = max
p∈[0,1]

h2((1− γ)p)− h2(γp), (359)

where h2 is the binary entropy. It has been shown in [WJZ23] that for 0.25 ≲ γ < 1,

EC,LOCC(Nad) ≥ EWJZ(Nad(ΦAA′)) > Q(Nad), (360)

Here, we can improve this bound by

EC,LOCC(Nad) ≥ DM(Nad(ΦAA′)∥PPT2) > Q(Nad) (361)

and show that the strict gap exists across the entire parameter region 0 < γ < 1 in Figure 9.
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Measured relative entropy: figures
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Figure 9: Comparison of the new lower bound DM(Nad(ΦAA′)∥PPT2) with the previously known
bounds EWJZ [WJZ23], ELR [LR23] and the quantum capacity Q for amplitude damping channel. The
horizontal axis is the channel parameter γ and the vertical axis is the value of the entanglement measure.

9 Conclusion

The significance of this work is multifaceted. First, we established a very general quantum AEP with
explicit convergence guarantees and computational efficiency. Given that the AEP is central to infor-
mation theory and is evident in its broad applications in both classical and quantum information theory,
we expect that our generalized quantum AEP plays a similar role and advances the study of quantum
information science further. Second, our generalized quantum Stein’s lemma addresses open questions
raised by Brandão et al. [BHLP20, Section 3.5] and Mosonyi et al. [MSW22, Section VI], which seek
a Stein’s lemma with computational efficiency. We provide a general methodology for approximating
the problem of interest when the original problem is difficult to solve and our result is not directly appli-
cable, along with illustrations in quantum resource theories. Due to the generality of this methodology,
we anticipate that this approach has the potential for far-reaching applications beyond the specific cases
discussed here. Third, we introduce a fully quantum version of adversarial hypothesis testing and a rel-
ative entropy accumulation theorem, which might find applications in quantum cryptography. Finally,
we believe that the technical tools established in this work—including the variational formula, superad-
ditivity for measured relative entropy between two sets of states, the chain rule property for quantum
relative entropy, and minimum output channel divergence—are of independent interest and are likely to
have further applications.

Many problems remain open for future investigation. For example, we have demonstrated that the
regularized divergence can be efficiently computed using convex optimization techniques. However,
developing a more explicit algorithm and implementing numerical solutions for these optimization pro-
grams is an area for further exploration. Additionally, designing a general algorithm to construct the
smallest superset of a given set that satisfies the polar assumption presents an intriguing challenge. This
would extend the applicability of our generalized AEP to boarder areas.
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While we have obtained explicit bounds on the second-order term for the generalized AEP of order
O(n2/3 log n), such bounds are not tight in general. Can one bound the second-order term by O(

√
n) as

in the AEP? Sharpening the second-order term would provide a more comprehensive understanding of
the convergence behavior and enhance its accuracy in practical applications. This work also opens new
directions by considering adversarial quantum channel discrimination and establishing its connection
with the minimum output channel divergence. We can keep exploring the strong converse exponent and
error exponent as well as quantum channel discrimination in the Chernoff setting. We anticipate that
the quantities of interest will also be characterized by the corresponding minimum output channel diver-
gence. We also proposed a new framework for quantum resource theory in which state transformations
are performed without requiring precise characterization of the states being manipulated, making it more
robust to imperfections. We proved the asymptotic reversibility of this theory under asymptotic resource
non-generating operations, while leaving the systematic study of other different operational classes and
settings for future exploration.
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[HV93] T. S. Han and S. Verdú. Approximation theory of output statistics. IEEE Transactions on
Information Theory, 39(3):752–772, 1993.

[HY24] M. Hayashi and H. Yamasaki. Generalized quantum Stein’s lemma and second law of
quantum resource theories. arXiv preprint arXiv:2408.02722, 2024.

57



[IRS16] R. Iten, J. M. Renes, and D. Sutter. Pretty good measures in quantum information theory.
IEEE Transactions on Information Theory, 63(2):1270–1279, 2016.

[KZ05] A. Kurdila and M. Zabarankin. Convex Functional Analysis. Systems & Control: Foun-
dations & Applications. Birkhäuser Basel, 2005.
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formulas. IEEE Transactions on Information Theory, 57(4):2474–2487, April 2011.

[MH23] M. Mosonyi and F. Hiai. Some continuity properties of quantum Rényi divergences.
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Appendices

In Section A we present the variational formula for the measured relative entropy with different
parameters α. In Section B we provide an alternative proof for Lemma 32. In Section C, we present a
counter-example to a potential improvement of the chain rule. In Section D, we will see that proving the
superadditivity of DM(A ∥B) directly from its variational formula requires the partial trace assumption.
Some useful properties are presented in Section E.

A Variational formula for DM,α(A ∥B)

Let h̄C (X) := infY ∈C Tr[XY ] and C ⋆ := {X ∈H+ : Tr[XY ] ≥ 1,∀Y ∈ C }.
Lemma 49. Let A ⊆ D and B ⊆H+ be two compact convex sets. Then it holds

DM,α(A ∥B) =
α

α− 1
log(∗) (362)

with

(∗) =



inf
W,V

hA (W ) s.t. W ∈H++, V ∈ B◦, W
α

α−1 ≤ V, if α ∈ (0, 1/2),

inf
W,V

hA (V ) s.t. W ∈H++, W ∈ B◦, W
α−1
α ≤ V, if α ∈ [1/2, 1),

sup
W,V

h̄A (V ) s.t. W ∈H++, W ∈ B⋆, W
α−1
α ≥ V, if α ∈ (1,+∞),

(363)

where the right-hand side is a convex program.

Proof. The case for α ∈ [1/2, 1) has been proved in the main text. Now we prove the other two cases.
Let α ∈ (0, 1/2). For any fixed ρ ∈ A and σ ∈ B, we have by Eq. (29) that

QM,α(ρ∥σ) := inf
W∈H++

αTr [ρW ] + (1− α) Tr[σW
α

α−1 ] (364)

= inf
W∈H++

W
α

α−1≤V

αTr [ρW ] + (1− α) Tr[σV ], (365)

where the second equality follows by introducing an additional variable V . Then we have

sup
ρ∈A
σ∈B

QM
α (ρ∥σ) = sup

ρ∈A
σ∈B

inf
W∈H++

W
α

α−1≤V

αTr [ρW ] + (1− α) Tr[σV ]. (366)

Note that all A ,B and {(W,V ) : W ∈ H++,W
α

α−1 ≤ V } are convex sets, with A ,B being compact.
Moreover, the objective function is linear in (ρ, σ), and also linear in (W,V ). So we can apply Sion’s
minimax theorem [Sio58, Corollary 3.3] to exchange the infimum and supremum and get

sup
ρ∈A
σ∈B

QM
α (ρ∥σ)= inf

W∈H++
W

α
α−1≤V

sup
ρ∈A
σ∈B

αTr [ρW ] + (1− α) Tr[σV ] (367)

= inf
W∈H++

W
α

α−1≤V

α sup
ρ∈A

Tr [ρW ] + (1− α) sup
σ∈B

Tr[σV ]. (368)

By using the definition of the support function, we have

sup
ρ∈A
σ∈B

QM
α (ρ∥σ) = inf

W∈H++
W

α
α−1≤V

αhA (W ) + (1− α)hB(V ) (369)

= inf
W∈H++

W
α

α−1≤V

hA (W )αhB(V )1−α, (370)
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where the second line follows from the weighed arithmetic-geometric mean inequality αx + (1 −
α)y ≤ xαy1−α (with equality if and only if x = y) and the fact that (W,V ) is a feasible solu-
tion implies (kW, k

α
α−1V ) is also a feasible solution for any k ≥ 0. Therefore, we can choose k =

(hA (W )/hB(W ))α−1, which implies hA (kW ) = hB(k
α

α−1V ) and therefore the equality of the weighed
arithmetic-geometric mean is achieved. Similarly, for any feasible solution (W,V ) we can always con-
struct a new solution (WhB(V )

1−α
α , V/hB(V )) achieves the same objective value. This implies

sup
ρ∈A
σ∈B

QM
α (ρ∥σ) = inf

W∈H++
W

α
α−1≤V

hB(V )=1

(hA (W ))α = inf
W∈H++

W
α

α−1≤V
hB(V )≤1

(hA (W ))α, (371)

where the second equality follows by the same reasoning. Finally, noting that hB(V ) ≤ 1 if and only if
V ∈ B◦, we have the asserted result in Eq. (53). It is easy to check that the objective function hA (W )
is convex in W and the feasible set is also a convex set.

Let α ∈ (1,+∞). For any fixed ρ ∈ A and σ ∈ B, we have by Eq. (29) that

QM,α(ρ∥σ) := sup
W∈H++

αTr
[
ρW

α−1
α

]
+ (1− α) Tr[σW ] (372)

= sup
W∈H++

W
α−1
α ≥V≥0

αTr [ρV ] + (1− α) Tr[σW ], (373)

where the second equality follows by introducing an additional variable V . Then we have

inf
ρ∈A
σ∈B

QM
α (ρ∥σ) = inf

ρ∈A
σ∈B

sup
W∈H++

W
α−1
α ≥V≥0

αTr [ρV ] + (1− α) Tr[σW ]. (374)

Note that all A ,B and {(W,V ) : W ∈ H++,W
α−1
α ≥ V ≥ 0} are convex sets, with A ,B being

compact. Moreover, the objective function is linear in (ρ, σ), and also linear in (W,V ). So we can apply
Sion’s minimax theorem [Sio58, Corollary 3.3] to exchange the infimum and supremum and get

inf
ρ∈A
σ∈B

QM
α (ρ∥σ) = sup

W∈H++
W

α−1
α ≥V≥0

inf
ρ∈A
σ∈B

αTr [ρV ] + (1− α) Tr[σW ] (375)

= sup
W∈H++

W
α−1
α ≥V≥0

α inf
ρ∈A

Tr [ρV ] + (1− α) inf
σ∈B

Tr[σW ]. (376)

Let h̄C (X) := infρ∈C Tr[Xρ], we have

inf
ρ∈A
σ∈B

QM
α (ρ∥σ) = sup

W∈H++
W

α−1
α ≥V≥0

αh̄A (V ) + (1− α)h̄B(W ) (377)

= sup
W∈H++

W
α−1
α ≥V≥0

h̄A (V )α h̄B(W )1−α, (378)

where the second line follows from the weighed arithmetic-geometric mean inequality αx + (1 −
α)y ≤ xαy1−α (with equality if and only if x = y) and the fact that (W,V ) is a feasible solu-
tion implies (kW, k

α−1
α V ) is also a feasible solution for any k ≥ 0. Therefore, we can choose k =

(h̄A (V )/h̄B(W ))α, which implies hA (kW ) = hB(k
α−1
α V ) and therefore the equality of the weighed

arithmetic-geometric mean is achieved. Similarly, for any feasible solution (W,V ) we can always con-
struct a new solution (W/h̄B(W ), V h̄B(W )

1−α
α ) achieves the same objective value. This implies

inf
ρ∈A
σ∈B

QM
α (ρ∥σ) = sup

W∈H++
W

α−1
α ≥V≥0

h̄B(W )=1

(h̄A (V ))α = sup
W∈H++

W
α−1
α ≥V≥0

h̄B(W )≥1

(h̄A (V ))α, (379)
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where the second equality follows by the same reasoning. Finally, noting that h̄B(W ) ≥ 1 if and only if
W ∈ B⋆ := {X ∈ H+ : Tr[XY ] ≥ 1,∀Y ∈ B}, we have the asserted result in Eq. (53). It is easy to
check that the objective function h̄A (V ) is concave in V and the feasible set is also a convex set. ⊓⊔

B Alternative proof for Lemma 32

Here we give an alternative proof for Lemma 32, which follows the argument outlined in [BP10, Section
III]. Denote

f(A , σ, ε) := sup
M
{Tr[σM ] : 0 ≤M ≤ I, Tr[ρM ] ≤ ε, ∀ρ ∈ A } . (380)

By using the definition of dual cone of a convex set, we get

f(A , σ, ε) = sup
M
{Tr[σM ] : 0 ≤M ≤ I, εI −M ∈ A ∗} , (381)

where A ∗ := {X : Tr[Xρ] ≥ 0,∀ρ ∈ A } is the dual cone of A . Then introducing the Lagrange
multipliers X ≥ 0, Y ≥ 0 and Z ∈ Cone(A ), with Cone(A ) being the cone generated by A , we get
the Lagrangian of f(A , σ, ε) as

L(σ, ε,M,X, Y, Z) :=Tr[σM ] + Tr[XM ] + Tr[Y (I −M)] + Tr[εI −M ]Z (382)

=Tr[M(σ +X − Y − Z)] + Tr[Y ] + εTr[Z]. (383)

It is easy to see that M = (ε/2)I is a strictly feasible solution to the optimzation problem in Eq. (381).
Therefore, by Slater’s condition [BV04], f(A , σ, ε) is equal to its dual program, which is given by

f(A , σ, ε) = inf
Y,Z
{Tr[Y ] + εTr[Z] : σ ≤ Y + Z, Y ≥ 0, Z ∈ Cone(A )} . (384)

Using that Tr[V+] = min {Tr[W ] : W ≥ 0,W ≥ V } with V+ being the positive part of V , we have

f(A , σ, ε) = inf
Z
{Tr[(σ − Z)+] + εTr[Z] : Z ∈ Cone(A )} (385)

= inf
ρ∈A

inf
x>0
{Tr[(σ − xρ)+] + εx} (386)

where the second line follows by introducing Z = xρ with ρ ∈ A and the fact that A ⊆ D is a set of
normalized quantum states. Applying the above result to the case that A = {ρ}, we get

f(ρ, σ, ε) = sup
M
{Tr[σM ] : 0 ≤M ≤ I, Tr[ρM ] ≤ ε} = inf

x>0
{Tr[(σ − xρ)+] + εx} . (387)

Taking this to Eq. (386), we have

f(A , σ, ε) = inf
ρ∈A

sup
M
{Tr[σM ] : 0 ≤M ≤ I, Tr[ρM ] ≤ ε} . (388)

Replacing M with I −M in Eqs. (380) and (388), we get

inf
M

{
Tr[σM ] : 0 ≤M ≤ I, Tr[ρ(I −M)] ≤ ε, ∀ρ ∈ A

}
(389)

= sup
ρ∈A

inf
M
{Tr[σM ] : 0 ≤M ≤ I, Tr[ρ(I −M)] ≤ ε} . (390)

In a simpler notation, this shows

βε(A ∥{σ}) = sup
ρ∈A

βε(ρ∥σ). (391)
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Now we are ready to prove the asserted result. Note that both B and {M : 0 ≤M ≤ I, α(A ,M) ≤ ε}
are convex with the later being compact. Moreover, the objective function Tr[σM ] is linear in both σ and
M . Therefore, we can apply Sion’s minimax theorem [Sio58, Corollary 3.3] to exchange the infimum
and supremum and get

βε(A ∥B) = inf
0≤M≤I

α(A ,M)≤ε

sup
σ∈B

Tr[σM ] = sup
σ∈B

inf
0≤M≤I

α(A ,M)≤ε

Tr[σM ]. (392)

Combining with Eq. (391), we have

βε(A ∥B) = sup
σ∈B

βε(A ∥{σ}) = sup
σ∈B

sup
ρ∈A

βε(ρ∥σ). (393)

This completes the proof.

C Counter-example to a potential improvement of the chain rule

The quantum channel divergence studied in most existing literatures [LKDW18] use the same test states
for both channels. So it may be expected that we can enhance the chain rule in Lemma 38 by using the
same test states as well. However, we show here that this is not possible by giving a counter-example.
That is, the chain rule cannot be enhanced to

DM(NA→B(ρRA)∥MA→B(σRA)) ≥ DM(ρR∥σR) +Dinf′

M (N∥M) (394)

where the channel divergence takes the same input state

Dinf′

M (N∥M) := inf
ρ∈D(A)

DM(NA→B(ρA)∥MA→B(ρA)). (395)

To see this, consider the generalized amplitude damping (GAD) channel, which is defined as

Aγ,N (ρ) =

4∑
i=1

AiρA
†
i , γ,N ∈ [0, 1], (396)

with the Kraus operator

A1 =
√
1−N(|0⟩⟨0|+

√
1− γ|1⟩⟨1|), A2 =

√
γ(1−N)|0⟩⟨1|, (397)

A3 =
√
N(
√
1− γ|0⟩⟨0|+ |1⟩⟨1|), A4 =

√
γN |1⟩⟨0|. (398)

Using convex optimization, we can numerically evaluate each terms DM(NA→B(ρRA)∥MA→B(σRA)),
DM(ρR∥σR) and Dinf′

M (N∥M). Then in Figure 10(a), we show that the channel divergence Dinf′
M is

subadditive under tensor product of channels. That is, it does not inherit the properties of the state di-
vergence, making it not a suitable channel extension. Moreover, in Figure 10(b), we show that the chain
rule property in Eq. (394) does not hold, as there are cases such that y < x2 in the plot.
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Figure 10: (a) Subadditivity for the channel divergence DM,inf′ where A0.5,0 and Ap,0.9 are the GAD
channels and p ranges from 0 to 1; (b) Random test for the chain rule property, where the quantum
channels are chosen as A0.5,0 and A0.5,0.9, the quantum states are 500 randomly generated quan-
tum states with real entries, x1 = DM(ρR∥σR) + Dinf

M (A0.5,0∥A0.5,0.9) and x2 = DM(ρR∥σR) +
Dinf′

M (A0.5,0∥A0.5,0.9).

D Proving the superadditivity of DM(A ∥B) from its variational formula

Here we show that if we attempt to prove the superadditivity of Lemma 24 by directly using the varia-
tional formula in Lemma 20,

DM(A ∥B) = sup
W∈B◦

++

−hA (− logW ), (399)

we will require the stability assumption of An under partial trace. Let W1 and W2 be any feasible
solutions to DM(A1∥B1) and DM(A2∥B2), respectively. It is clear that W1 ⊗ W2 is also a feasible
solution to DM(A12∥B12) by the polar assumption (B1)

◦
+ ⊗ (B2)

◦
+ ⊆ (B12)

◦
+. Now we aim to argue

that this achieves an objective value no smaller than those by W1 and W2. Note that −hA (− logW ) =
infρ∈A Tr[ρ logW ]. We hope to show

inf
ρ12∈A12

Tr[ρ12 log(W1 ⊗W2)] ≥ inf
ρ1∈A1

Tr[ρ1 logW1] + inf
ρ2∈A2

Tr[ρ2 logW2]. (400)

For any ρ12 ∈ A12, we have

Tr[ρ12 log(W1 ⊗W2)] = Tr[ρ12(logW1)⊗ I] + Tr[ρ12I ⊗ (logW2)] (401)

= Tr[Tr2 ρ12(logW1)] + Tr[Tr1 ρ12(logW2)]. (402)

If we had Tr2 ρ12 ∈ A1 and Tr1 ρ12 ∈ A2, then we can conclude Eq. (400). It is however not clear
how to reach this conclusion without this assumption. This justifies our use of continuity to prove
superadditivity in Lemma 24, thereby avoiding the partial trace assumption and placing fewer constraints
on the subsequent theories.

E Useful properties

We establish an explicit continuity for Dα was α → 1 with α < 1. It is analogous to [TCR09, Lemma
8] and [DFR20, Lemma B.8] and the proof is almost the same.
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Lemma 50 (Explicit continuity of Rényi divergences as α → 1 from below). Let ρ ∈ D(H) and

σ ∈ H+(H). Let η =
(
max(4, 22DP,3/2(ρ∥σ) + 2−2DP,1/2(ρ∥σ) + 1)

)2
. For α ∈ (1 − 1/ log η, 1), we

have

0 ≤ D(ρ∥σ)−DP,α(ρ∥σ) ≤ (1− α)(log η)2. (403)

As a result, we also have

0 ≤ D(ρ∥σ)−DS,α(ρ∥σ) ≤ (1− α)
(
(log η)2 +D(ρ∥σ) + log Tr(σ)

)
. (404)

Proof. We show the result for classical distributions P,Q overX and then the result follows immediately
for the Petz Rényi divergence by applying it to the corresponding Nussbaum-Szkoła distributions [NS09]
as was done in [DF19]. We follow the proof from [TCR09, Lemma 8]. Letting β = α− 1 < 0, we have

Dα(P∥Q) =
1

β
log
∑
x∈X

P (x)

(
P (x)

Q(x)

)β

. (405)

Letting tβ = 1 + β ln t+ rβ(t), where rβ(t) = tβ − β ln t− 1, we can write

Dα(P∥Q) =
1

β
log

(
1 + β

∑
x∈X

P (x) ln
P (x)

Q(x)
+
∑
x∈X

P (x)rβ

(
P (x)

Q(x)

))
. (406)

We now use the fact that ln(1 + y) ≤ y. Thus,

Dα(P∥Q) ≥ 1

β

1

ln 2

(
β
∑
x∈X

P (x) ln
P (x)

Q(x)
+
∑
x∈X

P (x)rβ

(
P (x)

Q(x)

))
(407)

= D(P∥Q) +
1

β ln 2

∑
x∈X

P (x)rβ

(
P (x)

Q(x)

)
. (408)

We now define sβ(t) = 2(cosh(β ln t) − 1) as in [TCR09], but recall that we have β < 0. Note
that sβ(t) = s−β(t) so we also have that it is monotonically increasing for t > 1 and concave in t for
β > −1/2 and t ≥ 3. In addition, we have rβ(t) = eβ ln t+(−β ln t+1)−2 ≤ eβ ln t+e−β ln t−2 = sβ(t)
for all t ≥ 0. Note that we also have sβ(t) = sβ(1/t) and sβ(t

2) = s2β(t). As a result, sβ(t) ≤
s2β(1 +

√
t+

√
1/t). As a consequence, because we assumed α > 1− 1/ log 16, we have 2β ≥ −1/2

and 1 +
√
t+

√
1/t ≥ 3 and we can use the concavity of s2β and get

Dα(P∥Q) ≥ D(P∥Q) +
1

β ln 2

∑
x∈X :P (x)>0

P (x)s2β

(
1 +

√
P (x)

Q(x)
+

√
Q(x)

P (x)

)
(409)

≥ D(P∥Q) +
1

β ln 2
s2β

 ∑
x∈X :P (x)>0

P (x)

(
1 +

√
P (x)

Q(x)
+

√
Q(x)

P (x)

) (410)

≥ D(P∥Q) +
1

β ln 2
s2β

(
1 + 22D3/2(P∥Q) + 2−2D1/2(P∥Q)

)
(411)

≥ D(P∥Q) +
1

β ln 2
s2β (
√
η) . (412)

Note that by Taylor’s theorem around z = 0, we have ez + e−z − 1 ≤ z2(ez + e−z). As a result
1

β ln 2s2β(
√
η) ≥ 1

β ln 2(2β ln
√
η)2 cosh(2β ln

√
η) = β(log η)2 ln 2 cosh(β ln η) ≥ β(log η)2 where we

used the fact that ln 2 cosh(ln 2) < 1, which proves that

Dα(P∥Q) ≥ D(P∥Q)− (1− α)(log η)2. (413)
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To prove the bound on the sandwiched Rényi divergence, we use the relation proved in [IRS16]
between the different divergences in the regime α ∈ (0, 1):

DS,α(ρ∥σ) ≥ αDP,α(ρ∥σ) + (1− α)(log Tr(ρ)− log Tr(σ)). (414)

This implies

DS,α(ρ∥σ) ≥ DP,α(ρ∥σ)− (1− α)DP,α(ρ∥σ)− (1− α) log Tr(σ) (415)

≥ D(ρ∥σ)− (1− α)
(
(log η)2 +D(ρ∥σ) + log Tr(σ)

)
(416)

⊓⊔

For α > 1, we use [TCR09, Lemma 8], with a slightly different parametrization. The proof is the
same as Lemma 50.

Lemma 51. Let ρ ∈ D(H) and σ ∈H+(H). For any α ∈ (1, 1 + 1/ log η), we have

DS,α(ρ∥σ) ≤ D(ρ∥σ) + (α− 1) (log η)2 , (417)

where η =
(
max(4, 2DP,3/2(ρ∥σ) + 2−DP,1/2(ρ∥σ) + 1)

)2
.

Lemma 52. Let α ∈ [1/2, 1], ρAB ∈ D(AB) and σ
(α)
B =

(TrA ραAB)
1
α

Z , where Z = Tr
(
(TrA ραAB)

1
α

)
.

Then

D
P, 3

2
(ρAB∥idA ⊗ σ

(α)
B ) ≤ 4 log dA. (418)

Note that the choice of the parameter 3
2 is not arbitrary and this lemma does not hold for higher

values. See the discussion in the proof of [DF19, Corollary III.5].

Proof. We have

Tr
(
ρ
3/2
AB(idA ⊗ σ

(α)
B )−1/2

)
= Z1/2Tr

(
ρ
3/2
ABidA ⊗ (TrA ραAB)

− 1
2α

)
. (419)

We start by showing that Z ≤ dA. In fact, we use the operator Jensen inequality for the operator concave
function x 7→ xα as follows:

TrA(ρ
α
AB) = dA

∑
a

⟨a|√
dA

ραAB

|a⟩√
dA

(420)

≤ dA

(∑
a

⟨a|√
dA

ρAB
|a⟩√
dA

)α

(421)

= d1−α
A ραB. (422)

As a result, we get

Z ≤ Tr((d1−α
A ραB)

1
α ) = d

1−α
α

A ≤ dA. (423)

For the inequality, we used the fact that the function x 7→ x1/α is monotone and continuous and thus
X 7→ Tr(X

1
α ) is monotone (see e.g., [Car10, Section 2.2]).

Now let us consider

Tr
(
ρ
3/2
ABidA ⊗ (TrA ραAB)

1
α

)
≤ Tr

(
ρABidA ⊗ (TrA ρAB)

− 1
2α

)
(424)

≤ Tr(ρABρ
−1
B ) (425)

≤ dA, (426)
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where we used for the first inequality the fact that ρ3/2AB ≤ ρAB , ραAB ≥ ρAB and the operator anti-

monotonicity of the function x 7→ x−
1
2α , and for the second inequality the fact that ρ

1
2α
B ≥ ρB . As a

result,

D
P, 3

2
(ρAB∥idA ⊗ σ

(α)
B ) ≤ 2 log(d

1/2
A dA) ≤ 4 log dA. (427)

⊓⊔

Proposition 53. For 0 ≤ ε < 1
2 , we have

H
√
2ε

max(B|C)ρ ≤ − inf
σC∈D(C)

DH,ε(ρBC∥idB ⊗ σC). (428)

Proof. Using Lemma 32 with A = {ρBC} and B = {idB ⊗ σC : σC ∈ D(C)}, we can write

− inf
σC∈D(C)

DH,ε(ρBC∥idB ⊗ σC) = log inf
0≤M≤I

{sup
σC

{Tr(MIB ⊗ σC) : Tr(MρBC) ≥ 1− ε} (429)

Let M be such that Tr(MρBC), define ρ̃BC =
√
MρBC

√
M . Then, by the gentle measurement lemma,

we have F (ρ, ρ̃) ≥ 1−
√
2ε (see e.g., [DKF+14, Lemma A.3]). Then, using Lemma 54, we get

sup
σC∈D(C)

∥∥∥∥(√MρBC

√
M)

1
2 idB ⊗ σ

1
2
C

∥∥∥∥2
1

≤ sup
σC

Tr(MI ⊗ σC) (430)

As such,

− inf
σC∈D(C)

DH,ε(ρBC∥idB ⊗ σC) (431)

≥ log inf
0≤M≤I

sup
σC

{∥∥∥∥(√MρBC

√
M)

1
2 idB ⊗ σ

1
2
C

∥∥∥∥2
1

: Tr(MρBC) ≥ 1− ε

}
(432)

≥ log inf
ρ̃BC∈H+(BC)

Tr(ρ̃)≤1

F (ρ,ρ̃)≥1−
√
2ε

sup
σC∈D(C)

∥∥∥∥ρ̃ 1
2
BC idB ⊗ σ

1
2
C

∥∥∥∥2
1

(433)

= H
√
2ε

max(B|C)ρ. (434)

⊓⊔

Lemma 54. Let ρ ∈ D(A) and σ ∈H+(A).∥∥∥(√Mρ
√
M)

1
2σ

1
2

∥∥∥2
1
≤ Tr(Mσ). (435)

Proof. This fact is used in [DKF+14, Proposition 4.2]. It uses the semidefinite program for the fidelity
∥√ω
√
θ∥21 = min{Tr(Zθ) : ωAE ≤ Z ⊗ IE , Z ≥ 0} [Wat09, Corollary 7], where ωAE is a purification

of ω. Let ρAE be a purification of ρA. Then we have
√
MAρAE

√
MA ≤MA ⊗ IE and

√
MAρAE

√
MA

is a purification of
√
MρA

√
M . As a result Z = M is feasible for the semidefinite program above and

we get the desired result. ⊓⊔

68


	Introduction
	Main contributions
	Organization

	Preliminaries
	Notations
	Polar set and support function
	Quantum divergences

	Variational formula and superadditivity
	Generalized quantum asymptotic equipartition property
	Lemmas required to prove the generalized AEP
	Proof of the generalized AEP

	Application 1: another generalized quantum Stein's lemma
	Operational setting: quantum hypothesis testing between two sets of states
	Generalized quantum Stein's lemma
	Quantum resource theory with partial information and its reversibility

	Application 2: adversarial quantum channel discrimination
	Operational setting: adversarial quantum channel hypothesis testing
	Adversarial quantum Stein's lemma
	Proof of the converse part
	Proof of the achievable part

	Justification of the regularization in the Stein's exponent

	Application 3: a relative entropy accumulation theorem
	Application 4: efficient bounds for quantum resource theory
	Quantum entanglement distillation
	Magic state distillation
	Entanglement cost for quantum states and channels

	Conclusion
	Variational formula for DM,(AB)
	Alternative proof for Lemma 32
	Counter-example to a potential improvement of the chain rule
	Proving the superadditivity of DM(AB) from its variational formula
	Useful properties

