Chain rules for quantum relative entropies and their applications

Kun Fang¹

[1909.05826, PRL] & [1909.05758]

Joint work with Hamza Fawzi¹, Omar Fawzi², Renato Renner³ and David Sutter³

¹ DAMTP, University of Cambridge ² Laboratoire de l'Informatique du Parallélisme, ENS de Lyon ³ Institute for Theoretical Physics, ETH Zurich

Beyond IID 2020

The chain rule

Entropy of a large system = sum of entropies of individual subsystems

For example, given a tripartite quantum state ρ_{ABC} we have

$$H(AB|C) = H(A|C) + H(B|AC)$$

$$H(A|B) := H(AB) - H(B)$$

$$H(A) := -\operatorname{Tr} \rho_A \log \rho_A$$

$$D(\rho\|\sigma) := \operatorname{Tr} \rho(\log \rho - \log \sigma)$$
 Recall that
$$H(A|B) = -D(\rho_{AB}\|\operatorname{id}_A \otimes \rho_B)$$

Question: Is there a chain rule for the quantum relative entropy?

The chain rule

How does the chain rule look like for quantum relative entropy?

For classical probability distributions we have

$$D(P_{XY} || Q_{XY}) = D(P_{X} || Q_{X}) + \sum_{x} P_{X}(x) D(P_{Y|X=x} || Q_{Y|X=x})$$

Less ambitious statement

$$D(P_{XY}||Q_{XY}) \le D(P_X||Q_X) + \max_x D(P_{Y|X=x}||Q_{Y|X=x})$$

How to model a conditional distribution (a channel) quantumly?

Relative entropy for quantum channels $\,\mathcal{E}_{A o B}\,$ and $\,\mathcal{F}_{A o B}\,$

Consider the worst-case scenario
$$D(\mathcal{E}\|\mathcal{F}) := \sup_{\rho_{RA}} D(\mathcal{E}(\rho_{RA})\|\mathcal{F}(\rho_{RA}))$$

$$D(\mathcal{E}(\rho_{RA}) || \mathcal{F}(\sigma_{RA})) \stackrel{?}{\leq} D(\rho_{RA} || \sigma_{RA}) + D(\mathcal{E} || \mathcal{F})$$

Outline for the rest of the talk

O Umegaki relative entropy

$$D(\rho \| \sigma) := \operatorname{Tr} \rho(\log \rho - \log \sigma)$$

Chain rule and its applications [1909.05826]

Belavkin-Staszewski relative entropy

$$\widehat{D}(\rho \| \sigma) = \operatorname{Tr} \rho \log[\rho^{1/2} \sigma^{-1} \rho^{1/2}]$$

Chain rule and its applications [1909.05758]

Summary and discussions

Umegaki Relative Entropy

D

Non-additivity of channel relative entropy

A fact: The channel relative entropy is **not additive** under tensor product.

There exists quantum channels ${\mathcal E}$ and ${\mathcal F}$ such that

$$D(\mathcal{E} \otimes \mathcal{E} || \mathcal{F} \otimes \mathcal{F}) > 2D(\mathcal{E} || \mathcal{F})$$

In sharp contrast with the relative entropy of quantum states

Let $\mathcal E$ and $\mathcal F$ be two different qubit **generalized amplitude damping channels** with Choi matrices $J_{\mathcal E}$ and $J_{\mathcal F}$

Using the covariance symmetry of these channels, we find

$$D(\mathcal{E}||\mathcal{F}) = \max_{\rho = \text{diag}(p, 1-p)} D(\sqrt{\rho} J_{\mathcal{E}} \sqrt{\rho} || \sqrt{\rho} J_{\mathcal{F}} \sqrt{\rho})$$

For some clever choice of ρ we find

$$D(\mathcal{E} \otimes \mathcal{E} || \mathcal{F} \otimes \mathcal{F}) \ge D(\mathcal{E}^{\otimes 2}(\rho) || \mathcal{F}^{\otimes 2}(\rho)) > 2D(\mathcal{E} || \mathcal{F})$$

Non-additivity leads to the definition of regularized channel relative entropy

$$D^{\text{reg}}(\mathcal{E}\|\mathcal{F}) := \lim_{n \to \infty} \frac{1}{n} D(\mathcal{E}^{\otimes n} \| \mathcal{F}^{\otimes n})$$

The naive chain rule conjecture is false

$$D(\mathcal{E}(\rho_{RA})||\mathcal{F}(\sigma_{RA})) \le D(\rho_{RA}||\sigma_{RA}) + D(\mathcal{E}||\mathcal{F})$$

There exists states ρ_{RA} , σ_{RA} and channels $\mathcal{E}_{A\to B}$, $\mathcal{F}_{A\to B}$ such that

$$D(\mathcal{E}(\rho_{RA}) \| \mathcal{F}(\sigma_{RA})) > D(\rho_{RA} \| \sigma_{RA}) + D(\mathcal{E} \| \mathcal{F})$$

Recall channel relative entropy $D(\mathcal{E}\|\mathcal{F}) := \sup_{\rho_{RA}} D(\mathcal{E}(\rho_{RA})\|\mathcal{F}(\rho_{RA}))$

The amortized channel relative entropy is defined as

$$D^{A}(\mathcal{E}||\mathcal{F}) := \sup_{\rho_{RA}, \sigma_{RA}} [D(\mathcal{E}(\rho_{RA})||\mathcal{F}(\sigma_{RA})) - D(\rho_{RA}||\sigma_{RA})]$$

It is known [Wang-Wilde-19] that

$$D^A(\mathcal{E}\|\mathcal{F}) \ge D^{\text{reg}}(\mathcal{E}\|\mathcal{F})$$

Hence there exist channels ${\mathcal E}$ and ${\mathcal F}$ such that

$$D^{A}(\mathcal{E}\|\mathcal{F}) \ge D^{\text{reg}}(\mathcal{E}\|\mathcal{F}) > D(\mathcal{E}\|\mathcal{F})$$

Chain rule for Umegaki relative entropy

$$D(\mathcal{E}(\rho_{RA})||\mathcal{F}(\sigma_{RA})) \le D(\rho_{RA}||\sigma_{RA}) + D(\mathcal{E}||\mathcal{F})$$

Chain Rule

For any quantum states ho_{RA} , σ_{RA} and quantum channels $\mathcal{E}_{A o B}$, $\mathcal{F}_{A o B}$

$$D(\mathcal{E}(\rho_{RA}) \| \mathcal{F}(\sigma_{RA})) \le D(\rho_{RA} \| \sigma_{RA}) + D^{\text{reg}}(\mathcal{E} \| \mathcal{F})$$

Some remarks:

- \circ For any channel pair $(\mathcal{E},\mathcal{F})$, there exists ρ and σ such that the chain rule holds with equality, i.e., $D^A(\mathcal{E}\|\mathcal{F}) = D^{\mathrm{reg}}(\mathcal{E}\|\mathcal{F})$
- $O(D^{\text{reg}}(\mathcal{E}||\mathcal{F})) = D(\mathcal{E}||\mathcal{F})$ for specific channels
 - Classical-quantum channels
 - Covariant channels w.r.t. unitary group
 - $\mathcal E$ arbitrary and $\mathcal F$ a replacer channel
- \circ For $\mathcal{E} = \mathcal{F}$ we recover the data-processing inequality $D(\mathcal{E}(\rho) \| \mathcal{E}(\sigma)) \leq D(\rho \| \sigma)$

Application: channel discrimination

Given a quantum channel $G \in \{\mathcal{E}, \mathcal{F}\}$

Using ${\mathcal G}$ n-times the task is to determine if ${\mathcal G}={\mathcal E}$ or ${\mathcal G}={\mathcal F}$

 $D^{\text{reg}}(\mathcal{E} \| \mathcal{F})$ [Wang-Wilde-19]

 $D^A(\mathcal{E}||\mathcal{F})$ [Wang-Wilde-19]

Because non-adaptive strategies are a special case of adaptive strategies

But the new chain rule says

$$D^{\text{reg}}(\mathcal{E}\|\mathcal{F}) \le D^A(\mathcal{E}\|\mathcal{F})$$

$$D^{\text{reg}}(\mathcal{E}\|\mathcal{F}) = D^A(\mathcal{E}\|\mathcal{F})$$

Adaptive strategies are no more powerful than non-adaptive ones!

Open questions

Do we have a chain rule for sandwiched/Petz Rényi relative entropy

$$P_{\alpha}(\mathcal{E}(\rho_{RA}) || \mathcal{F}(\sigma_{RA})) \leq D_{\alpha}(\rho_{RA} || \sigma_{RA}) + D_{\alpha}^{\text{reg}}(\mathcal{E} || \mathcal{F}) \qquad \alpha \in (1/2, 1) \cup (1, \infty)$$

Sandwiched chain rule with $\alpha > 1$ is solved by [Fawzi-Fawzi-2020, see Wednesday's talk]

O Single-letterize more quantities as we did for $D^{\text{reg}}(\mathcal{E}||\mathcal{F})$ with $D^A(\mathcal{E}||\mathcal{F})$ For example: Capacity formula?

$$Q(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} I_c(\mathcal{N}^{\otimes n}) =: I_c^{\text{reg}}(\mathcal{N}) =$$

Extreme non-additivity of channel relative entropy? (Mark Wilde's Twitter)

Is there a universal n such that

$$D^{\mathrm{reg}}(\mathcal{E}\|\mathcal{F}) = \frac{1}{n}D(\mathcal{E}^{\otimes n}\|\mathcal{F}^{\otimes n})$$
 for all channels

Analogous to a result by [Cubbit et.al, 1408.5115] that the channel coherent information is extremely non-additive.

Belavkin-Staszewski Relative Entropy

Definitions: geometric Rényi divergence

Geometric Rényi divergence:

$$\widehat{D}_{\alpha}(\rho \| \sigma) := \frac{1}{\alpha - 1} \log \operatorname{Tr} G_{1-\alpha}(\rho, \sigma)$$

Matrix geometric mean (an operator connects X and Y):

$$G_{\alpha}(X,Y) := X^{\frac{1}{2}} \left(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}} \right)^{\alpha} X^{\frac{1}{2}}$$

- Also called the maximal Rényi divergence [Matsumoto-15]: the largest quantum Rényi divergence which satisfies dataprocessing inequality
- Converge to Belavkin-Staszewskiwhen alpha = 1

$$\widehat{D}(\rho \| \sigma) := \operatorname{Tr} \rho \log[\rho^{1/2} \sigma^{-1} \rho^{1/2}]$$

 $\rightarrow \alpha$ \circ Nicer properties than the widely-used Petz and sandwiched ones

Chain rule and other basic properties

Chain Rule

For any quantum states ho_{RA} , σ_{RA} and quantum channels $\mathcal{E}_{A o B}$, $\mathcal{F}_{A o B}$

$$\widehat{D}_{\alpha}(\mathcal{E}(\rho_{RA}) \| \mathcal{F}(\sigma_{RA})) \leq \widehat{D}_{\alpha}(\rho_{RA} \| \sigma_{RA}) + \widehat{D}_{\alpha}(\mathcal{E} \| \mathcal{F})$$

$$\alpha \in (1,2]$$

Other nice properties:

Single-letter

Closed-form
$$\widehat{D}_{\alpha}(\mathcal{E}\|\mathcal{F}) = \frac{1}{\alpha-1}\log \left\|\operatorname{Tr}_{B}G_{1-\alpha}(J_{RB}^{\mathcal{E}},J_{RB}^{\mathcal{F}})\right\|_{\infty}$$
 Additivity
$$\widehat{D}_{\alpha}(\mathcal{E}_{1}\otimes\mathcal{E}_{2}\|\mathcal{F}_{1}\otimes\mathcal{F}_{2}) = \widehat{D}_{\alpha}(\mathcal{E}_{1}\|\mathcal{F}_{1}) + \widehat{D}_{\alpha}(\mathcal{E}_{2}\|\mathcal{F}_{2})$$
 Sub-additivity
$$\widehat{D}_{\alpha}(\mathcal{E}_{2}\circ\mathcal{E}_{1}\|\mathcal{F}_{2}\circ\mathcal{F}_{1}) \leq \widehat{D}_{\alpha}(\mathcal{E}_{1}\|\mathcal{F}_{1}) + \widehat{D}_{\alpha}(\mathcal{E}_{2}\|\mathcal{F}_{2})$$
 SDP
$$\inf_{\mathcal{F}\in C}\widehat{D}_{\alpha}(\mathcal{E}\|\mathcal{F}) \text{ is SDP computable if } C \text{ is given by SDP conditions}$$

Remarks:

- These properties will empower a wide range of applications.
- \circ Similar properties hold for α in (0,1) [Katariya-Wilde-2020].
- Umegaki relative entropy does not satisfy these properties.

Application: channel capacity

Task: quantum comm. over a noisy channel with free classical comm. assistance

Channel capacity: the capability of a channel to reliably transmit information

Notoriously hard to evaluate and we aim to find an upper bound as tight as possible

Rains entanglement measure

$$\widehat{R}_{\alpha}(\rho_{AB}) := \inf_{\sigma_{AB} \in \mathsf{PPT}'(A:B)} \widehat{D}_{\alpha}(\rho_{AB} \| \sigma_{AB}) \qquad \mathsf{PPT}'(A:B) := \{\sigma_{AB} \geq 0 : \|\sigma_{AB}^{T_B}\|_1 \leq 1\}$$

Rains channel information

$$\widehat{R}_{\alpha}(\mathcal{N}) := \inf_{\mathcal{M} \in \mathcal{V}(A:B)} \widehat{D}_{\alpha}(\mathcal{N} \| \mathcal{M}) \qquad \qquad \mathcal{V}(A:B) := \{ \mathcal{M} \in \operatorname{CP} : \|\Theta_{B} \circ \mathcal{M}_{A \to B}\|_{\diamondsuit} \leq 1 \}$$

Chain rule immediately implies

$$\widehat{R}_{\alpha}(\mathcal{N}_{A\to B}(\rho_{A'AB})) - \widehat{R}_{\alpha}(\rho_{A'AB}) \le \widehat{R}_{\alpha}(\mathcal{N})$$

Q: What does this mean?

A: Net entanglement generated via the channel $\mathcal N$ will be no greater than $\widehat R_{\alpha}(\mathcal N)$

Q: Why should we care about this?

A: This is a sub-module in quantum communication.

Application: channel capacity

LOCC (local operation and classical comm.) assisted quantum communication protocol

Goal: establish maximally entangled state

+ free classical communication <u>teleportation</u> transmit quantum info.

Using channel n times we have $\widehat{R}_{\alpha}(\omega) \leq \Delta_1 + \Delta_2 + \cdots + \Delta_n \leq n \cdot \widehat{R}_{\alpha}(\mathcal{N})$

On average, entanglement generated is no greater than $\widehat{R}_{\alpha}(\mathcal{N})$

Thus we have an improved bound $Q^{\leftrightarrow}(\mathcal{N}) \leq \widehat{R}_{\alpha}(\mathcal{N}) \leq R_{\max}(\mathcal{N})$

Previously best-known bound [Wang-Fang-Duan-18, Berta-Wilde-18; QIP'18 talk]

Example

$$Q^{\leftrightarrow}(\mathcal{N}) \leq \widehat{R}_{\alpha}(\mathcal{N}) \leq R_{\max}(\mathcal{N})$$

- o $\widehat{R}_{\alpha}(\mathcal{N})$ is tighter than $R_{\max}(\mathcal{N})$ in general.
- The improvement is significant for almost all channels.
- \circ The new bound cannot be trivially pushed further to Umegaki's relative entropy D as a single-letter bound.

Other applications

The BS/geometric Rényi divergence can also found applications in:

- Classical/private/magic generating capacities
- Point-to-point/bidirectional channels
- Assisted/unassisted communication scenario
- o Channel discrimination $D^{\text{reg}}(\mathcal{N}||\mathcal{M}) \leq \widehat{D}_{\alpha}(\mathcal{N}||\mathcal{M})$

See 1909.05758 for more details

Potential improvements in quantum network theory, quantum repeaters, quantum key distribution, quantum games ... (basically anywhere that involves $D_{\rm max}$)

Open question

Belavkin-Staszewski relative entropy/Geometric Rényi divergence admits **nice mathematical properties**. **But** what are their operational meanings? Do they naturally show up in certain tasks?

For example:

- Umegaki relative entropy: optimal error exponent in the hypothesis testing problem [Hiai-Petz-1991]
- Petz Rényi divergence: quantum generalization of Chernoff's bound on the success probability in binary hypothesis testing [Audenaert et al.-2007]
- Sandwiched Rényi divergence: strong converse regime of asymmetric binary hypothesis testing [Mosonyi-Ogawa-2015]

Summary

Summary

Chain rule for Umegaki relative entropy

$$D(\mathcal{E}(\rho_{RA}) \| \mathcal{F}(\sigma_{RA})) \le D(\rho_{RA} \| \sigma_{RA}) + D^{\text{reg}}(\mathcal{E} \| \mathcal{F})$$

- O Adaptive strategies are no more powerful than non-adaptive ones for channel discrimination $D^{\text{reg}}(\mathcal{E}||\mathcal{F}) = D^A(\mathcal{E}||\mathcal{F})$
- Robust version of data-processing inequality
- See arXiv 1909.05826 for a slightly more general version
- Chain rule for Belavkin-Staszewski/geometric Rényi relative entropy

$$\widehat{D}_{\alpha}(\mathcal{E}(\rho_{RA}) \| \mathcal{F}(\sigma_{RA})) \le \widehat{D}_{\alpha}(\rho_{RA} \| \sigma_{RA}) + \widehat{D}_{\alpha}(\mathcal{E} \| \mathcal{F})$$

- Other nice properties: closed-form formula, additive under tensor product, sub-additive under composition, easy to do optimization
- Improved upper bounds for quantum/private/classical/magic state generation capacities /channel discrimination
- Potential applications in quantum network theory, quantum repeaters, quantum key distribution, quantum games...

Thanks for your attention!

See arXiv for more details

[1909.05826, PRL] & [1909.05758]

