Chain rules for quantum relative entropies
and their applications

Kun Fang?!
[1909.05826, PRL] & [1909.05758]

Joint work with Hamza Fawzi?,
Omar Fawzi?, Renato Renner?® and David Sutter3

IDAMTP, University of Cambridge
2 Laboratoire de I'Informatique du Parallélisme, ENS de Lyon
3 Institute for Theoretical Physics, ETH Zurich

2% UNIVERSITY OF S—— — T
o camieriDoE —= == ETHzurich

ENS DE LYON

Beyond IID 2020



The chain rule

Entropy of a large system = sum of entropies of individual subsystems

For example, given a tripartite quantum state PABC we have
H(AB|C) = H(A|C) + H(B|AC) H(A|B) := H(AB) — H(B)
H(A):=—Trpalogpa

D(pllo) := Trp(logp — log o
Recall that H(A|B) = —D(pag|ida ® ps) (pllo) p(log p )

Question: Is there a chain rule for the quantum relative entropy?




The chain rule

How does the chain rule look like for quantum relative entropy?

For classical probability distributions we have

D(Pxv|@xv) = D(Px||@x) + ZPX<37)D(PY|X:$HQY|X::B)

Less ambitious statement
D(Pxy |Qxy) < D(Px[|Qx) + max D(Py x—s | Qv x=:)

How to model a conditional distribution (a channel) quantumly?

Relative entropy for quantum channels £4_.p and Fa4_.p

Consider the worst-case scenario D(E||F) := sup D(E(pra)||F(pra))

PRA

?
D(E(pra)llF(ora)) < D(prallora) + D(E|IF)



Outline for the rest of the talk

© Umegaki relative entropy D

D(pllo) := Tr p(log p — log o)
Chain rule and its applications [1909.05826]

© Belavkin-Staszewski relative entropy

/\
D(p|lo) = Trplog[p*/?0~ p'/?] D

Chain rule and its applications [1909.05758]

© Summary and discussions



Umegaki Relative Entropy

D



Non-additivity of channel relative entropy

A fact: The channel relative entropy is not additive under tensor product.

There exists quantum channels £ and JF such that
D(ERE|FRF)>2D(E|F)

In sharp contrast with the relative entropy of quantum states

Let £ and F be two different qubit generalized amplitude damping channels
with Choi matrices J¢ and Jr

Using the covariance symmetry of these channels, we find

D(EIF) = max  D(VpJeypllvalryp)

p=diag(p,1—p)
For some clever choice of P we find

D(& ® E||F ® F) = D(EZ*(p)|F**(p)) > 2D(E]|F)

Non-additivity leads to the definition of regularized channel relative entropy

1
reg I = Xn Xn
D" (&E||F) := nh_)rxgo nD(é' | F=™)



The naive chain rule conjecture is false

D(E(pra)llF(ora)) < D(prallora) + D(E|F) x

There exists states PrRA,0RA and channels €45, F4_, g such that

D(E(pra)llF(ora)) > D(prallora) + D(E|F)

Recall channel relative entropy D(E||F) := sup D(E(pra)||F(pra))

PRA

The amortized channel relative entropy is defined as

DAE|IF) == sup [D(E(pra)llF(0rA)) — D(prallora)]

PRAORA

It is known [Wang-Wilde-19] that
DA(E||F) = D*¢(&||F)
Hence there exist channels £ and F such that

DA(E|lF) = D"¢(E||.F) > D(E||F)



Chain rule for Umegaki relative entropy

D(E(pra)llF(ora)) < D(prallora) + D(E||F) x
Chain Rule

For any quantum states PrRA ,0rA and quantum channels €45, Fan

D(E(pra)|lF(0ra)) < D(prallora) + D™ (E[|F)

Some remarks:

o For any channel pair (£, F) , there exists 2 and O such that the chain
rule holds with equality, i.e., DA(&||F) = D™¢(£||F)

o D"™(&||F) = D(&||F) for specific channels

Classical-quantum channels
Covariant channels w.r.t. unitary group
& arbitrary and F a replacer channel

o For & = F we recover the data-processing inequality D(E(p)||€(c)) < D(plo)



Application: channel discrimination

Given a quantum channel G € {&€, F}
Using G n-times the task is to determineif G =& or G = F

G B
g -G -
000 /% P]_ PZ sse Pn /%
g — - H =
non-adaptive strategy adaptive strategy
D"¢(&||F) [Wang-Wilde-19] DA(E||F) [Wang-Wilde-19]

Because non-adaptive strategies are a special case of adaptive strategies

D"¢(E||F) < DA(E|F)
But the new chain rule says

De(E|l.F) = DAENlF) M

Adaptive strategies are no more powerful than non-adaptive ones!



Open guestions

o Do we have a chain rule for sandwiched/Petz Rényi relative entropy

?
Do (E(pra) | F(9r4)) < Dalprallora) + DFE(E|F) € (1/2,1) U (1, 00)

Sandwiched chain rule with &« > 1 is solved by [Fawzi-Fawzi-2020, see Wednesday'’s talk]

o Single-letterize more quantities as we did for D™¢(£||F) with D#(&||F)

For example: Capacity formula?

QN) = lim —L(N®") = [*2(N) =

n—oo M, °

o Extreme non-additivity of channel relative entropy? (Mark Wilde’s Twitter)

Is there a universal n such that
1
D"¢(&||F) = ED(8®”H]-"®”) for all channels
Analogous to a result by [Cubbit et.al, 1408.5115] that
the channel coherent information is extremely non-additive.



Belavkin-Staszewski
Relative Entropy

\

D



Definitions: geometric Rényi divergence

Geometric Rényi divergence:

~ 1
Da(pllo) := ——=log Tr G1—a(p, 0)

Matrix geometric mean (an operator connects X and Y):
Go(X,Y) = X3 (X—%YX—%)a X}

o Also called the maximal Rényi
divergence [Matsumoto-15]:
the largest qguantum Rényi
divergence which satisfies data-
processing inequality

o Converge to Belavkin-Staszewski
when alpha =1

D(p|lo) == Trplog[p'/20~1p'/?]

1.0 1.95 15 175 50 ¢ o Nicer properties than the widely-
used Petz and sandwiched ones



Chain rule and other basic properties

Chain Rule
For any quantum states PrRA ,0RrRA and quantum channels €45, Fa_5B
Do(€(pra)llF(0rA)) < Dalprallora) + Da(€||F) a € (1,2]
Other nice properties: Single-letter
Closed-form Do(E||F) = 1 log || Trs Gi—a(Jip: JhB) || .
Additivity Do(&1 @ &||F1 © Fo) = Do(E1||F1) + Da(E|F2)
Sub-additivity Do (&2 0 &1]|F2 0 F1) < Da(&1l|F1) + Da(E2l|F2)
SDP inf D.(&]|F) is SDP computable if C'is given by SDP conditions

Remarks:

o These properties will empower a wide range of applications.
o Similar properties hold for a in (0,1) [Katariya-Wilde-2020].
o Umegaki relative entropy does not satisfy these properties.



Application: channel capacity

Task: qguantum comm. over a noisy channel with free classical comm. assistance

Channel capacity: the capability of a channel to reliably transmit information

Notoriously hard to evaluate and we aim to find an upper bound as tight as possible
Rains entanglement measure

R = inf D PPT'(A : B) := >0: oLz, <1
o(paB) SR S, o(paBlloas) (A:B):={oap =2 0:[loygl <1}

Rains channel information

Ro(N):= inf  Do(N|M) V(A:B):={M€eCP: 050 Mzl <1}
MEeV(A:B)

Chain rule immediately implies  Ro(Nus5(paran)) — Ra(paras) < Roa(N)
A/ A/

Q: What does this mean?

A N B A: Net entanglement generated via the channel M
will be no greater than R, (N)

B’ B’ Q: Why should we care about this?

DA AD Nass(paran) A: This is a sub-module in quantum communication.



Application: channel capacity

LOCC (local operation and classical comm.) assisted qguantum communication protocol

A} A A,
M
L L L L N
O_A1 _B_lo_AQN B: " 0 0] Ay N B, 0 W
C C c T ¢C C i,
0 —I—Al —|—A2 "I_An

Goal: establish maximally entangled state

+ free classical communication -t&/€portation - 4ransmit quantum info.

Using channel n times we have Ra(w) < A1+ Ag+ -+ A, < 1 Ro(N)
On average, entanglement generated is no greater than fia(/\/)

Thus we have an improved bound Q7 (W) < Ra(N) < Ripax(N)

|

Previously best-known bound [Wang-Fang-Duan-18, Berta-Wilde-18; QIP’18 talk]



Q7 (N) < Ro(N) < Ripax (V)

o o

-

Approximate
covariance bound

Max-Rains
information

Squashed
entanglement
bound

o0 R, (N) is tighter than Ruax(N) in general.
o The improvement is significant for almost all channels.
o The new bound cannot be trivially pushed further to Umegaki’s
relative entropy D as a single-letter bound.
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generalized amplitude damping channel (N=0.3
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Other applications

The BS/geometric Rényi divergence can also found applications in:

o Classical/private/magic generating capacities
o Point-to-point/bidirectional channels

o Assisted/unassisted communication scenario

o Channel discrimination D"¢(\||M) < Do (N M)

See 1909.05758 for more details

Potential improvements in
guantum network theory,
guantum repeaters, guantum key
distribution, quantum games ...
(basically anywhere that

involves Dmax)

1.0 1.95 1.5 1.75 2.0



Belavkin-Staszewski relative entropy/Geometric Rényi divergence admits nice
mathematical properties. But what are their operational meanings? Do they
naturally show up in certain tasks?

For example:

o Umegaki relative entropy: optimal error exponent in the hypothesis testing
problem [Hiai-Petz-1991]

o Petz Rényi divergence: quantum generalization of Chernoff’s bound on the
success probability in binary hypothesis testing [Audenaert et al.-2007]

o Sandwiched Rényi divergence: strong converse regime of asymmetric
binary hypothesis testing [Mosonyi-Ogawa-2015]



Summary



o Chain rule for Umegaki relative entropy
D(E(pra)lF(ora)) < D(prallora) + D™ (E]|F)

o Adaptive strategies are no more powerful than non-adaptive ones
for channel discrimination D™¢(£||F) = D*(&||F)

o Robust version of data-processing inequality

o See arXiv 1909.05826 for a slightly more general version

o Chain rule for Belavkin-Staszewski/geometric Rényi relative entropy
Do(E(pra)| F(0ra)) < Dalprallora) + Da(E]|F)

o Other nice properties: closed-form formula, additive under tensor
product, sub-additive under composition, easy to do optimization

o Improved upper bounds for quantum/private/classical/magic state
generation capacities /channel discrimination

o Potential applications in quantum network theory, quantum repeaters,
guantum key distribution, quantum games...



Thanks for your attention!

See arXiv for more details

[1909.05826, PRL] & [1909.05758]
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