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We study the one-shot and asymptotic quantum communication assisted with the
positive-partial-transpose-preserving (PPT) and no-signalling (NS) codes. We first show
improved general semidefinite programming (SDP) finite blocklength converse bounds for
quantum communication with a given infidelity tolerance and utilize them to study the de-
polarizing channel and amplitude damping channel in a small blocklength. Based on the
one-shot bounds, we then derive a general SDP strong converse bound for the quantum
capacity of an arbitrary quantum channel. In particular, we prove that the SDP strong con-
verse bound is always smaller than or equal to the partial transposition bound introduced by
Holevo and Werner, and the inequality could be strict. Furthermore, we show that the SDP
strong converse bound can be refined as the max-Rains information, which is an analog to
the Rains information introduced in [Tomamichel/Wilde/Winter, IEEE Trans. Inf. Theory
63:715, 2017]. This also implies that it is always no smaller than the Rains information. Fi-
nally, we establish an inequality relationship among some of these known strong converse
bounds on quantum capacity.

I. INTRODUCTION

A. Background

The reliable transmission of quantum information via noisy quantum channels is a fundamen-
tal problem in quantum information theory. The quantum capacity of a noisy quantum channel is
the optimal rate at which it can convey quantum bits (qubits) reliably over asymptotically many
uses of the channel. The theorem by Lloyd, Shor, and Devetak (LSD) [2–4] and the work in Refs.
[5–7] show that the quantum capacity is equal to the regularized coherent information. The quan-
tum capacity is notoriously difficult to evaluate since it is characterized by a multi-letter, regular-
ized expression. Our understanding of the quantum capacity remains limited since it is not even
known to be computable [8] and the capacity of basic channels (e.g., depolarizing channel) is still
unsolved.

The converse part of the LSD theorem states that if the rate exceeds the quantum capacity,
then the fidelity of any coding scheme cannot approach one in the limit of many channel uses. A
strong converse property leaves no room for the trade-off between rate and error, i.e., the error
probability vanishes in the limit of many channel uses whenever the rate exceeds the capacity. For
classical channels, Wolfowitz [9] established the the strong converse property for the classical ca-
pacity. For quantum channels, the strong converse property for the classical capacity is confirmed
for several classes of channels [10–15].
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For quantum communication, the strong converse property was studied in Ref. [16] and such
property of generalized dephasing channels was established [16]. Given an arbitrary quantum
channel, a previously known efficiently computable strong converse bound on the quantum ca-
pacity for general channels is the partial transposition bound [17], which was proved to be a
strong converse bound for the two-way assisted quantum capacity [18]. Recently, the Rains infor-
mation [16] was established to be a strong converse bound for quantum communication. For the
setting of weak converse, there are other known upper bounds for quantum capacity [19–27] and
most of them require specific settings to be computable and relatively tight.

Moreover, in a practical setting, the number of quantum channel uses is finite and one has
to make a trade-off between the transmission rate and error tolerance. For both practical and
theoretical interest, it is important to optimize the trade-off the rate and infidelity of quantum
communication with a finite blocklength. The study of this finite blocklength setting has recently
attracted great interest in classical information theory (e.g., [28, 29]) as well as in quantum infor-
mation theory (e.g., [30–42]).

B. Summary of results

In this paper, we focus on the quantum communication via noisy quantum channels in both
one-shot and asymptotic settings. We will study the quantum capacity assisted with positive
partial transpose preserving (PPT) and no-signalling (NS) codes [34]. The PPT codes include all
the operations that can be implemented by local operations and classical communication while
the NS codes are potentially stronger than entanglement-assisted codes.

In section III, we consider the non-asymptotic quantum capacity. We first introduce the one-
shot ε-infidelity quantum capacity with PPT (and NS) codes and characterize it as an optimiza-
tion problem. Based on this optimization, we provide a hierarchy of SDPs evaluate the one-shot
capacity with a given infidelity tolerance. Comparing with the previous efficiently computable
converse bound given in Ref. [40], we show that our SDP converse bounds are tighter in general
and can be strictly tighter for basic channels such as the qubit amplitude damping channel and
the qubit depolarizing channel.

In section IV, we investigate the asymptotic scenario. We first present an SDP strong converse
bound, denoted as QΓ, on the quantum capacity for general channels. For any code with a rate
exceedingQΓ, the infidelity of quantum communication goes to one exponentially fast in the limit
of many channel uses. This converse bound has some nice properties, such as additivity under
tensor product. In particular, we show that QΓ is a channel analog of SDP entanglement measure
EW [43] and can be further refined into a similar optimization form as the Rains information [16]
in the sense of replacing the relative entropy with the max-relative entropy. This result implies
that QΓ is always no smaller than the Rains information. We also remark that in the case of
entanglement breaking channels with non-zero classical capacity, QΓ can be strictly tighter than
the entanglement-assisted quantum capacity. Finally, we show that our QΓ is always tighter than
the partial transposition bound and can be strictly tighter in some cases.

II. PRELIMINARIES

In the following, we will frequently use symbols such as A (or A′) and B (or B′) to denote
(finite-dimensional) Hilbert spaces associated with Alice and Bob, respectively. We use dA to
denote the dimension of system A. The set of linear operators over A is denoted by L (A). The
set of positive operators over A is denoted by P (A). The set of positive operators with unit trace
is denoted by S (A), while the set of positive operators with trace no greater than 1 is denoted
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by S≤ (A). We usually write an operator with subscript indicating the system that the operator
acts on, such as MAB , and write MA ∶= TrBMAB . Note that for a linear operator R ∈ L (A),
we define ∣R∣ =

√
R†R, where R† is the adjoint operator of R, and the trace norm of R is given

by ∥R∥1 = Tr ∣R∣. A quantum channel NA′→B is simply a completely positive (CP) and trace-
preserving (TP) linear map from L (A′) to L (B). The Choi-Jamiołkowski matrix of N is given
by JN = ∑ij ∣iA⟩⟨jA∣⊗N (∣iA′⟩⟨jA′ ∣), where {∣iA⟩} and {∣iA′⟩} are orthonormal bases on isomorphic
Hilbert spacesA andA′, respectively. A positive semidefinite (PSD) operatorE ∈ L (A⊗B) is said
to be a positive partial transpose operator (or simply PPT) if ETB ≥ 0, where TB means the partial
transpose with respect to the party B, i.e., (∣ij⟩⟨kl∣)TB = ∣il⟩⟨kj∣. As shown in Ref. [44], a bipartite
operation ΠAiBi→AoBo is PPT-preserving if and only if its Choi-Jamiołkowski matrix ZAiBiAoBo is
PPT.

The constraints of PPT and NS can be mathematically characterized as follows. A bipartite
operation ΠAiBi→AoBo is no-signalling and PPT-preserving if and only if its Choi-Jamiołkowski
matrix ZAiBiAoBo satisfies [34]:

ZAiBiAoBo ≥ 0, (CP)

ZAiBi = 1AiBi , (TP)

Z
TBiBo

AiBiAoBo
≥ 0, (PPT)

ZAiBiBo =
1Ai

dAi

⊗ZBiBo , (A /→ B)

ZAiBiAo =
1Bi

dBi

⊗ZAiAo , (B /→ A)

(1)

where the five lines correspond to characterize that Π is CP, TP, PPT, NS from A to B, NS from B
to A, respectively. Note that the mathematical structure of quantum no-signalling correlations (or
NS codes) was also studied in Ref. [45].

Semidefinite programming (SDP) [46] is a useful tool in the study of quantum information and
computation with many applications (e.g., [47–57]). In this work, we use the CVX software [58]
and QETLAB (A Matlab Toolbox for Quantum Entanglement) [59] to solve the SDPs.

III. CONVERSE BOUNDS FOR NON-ASYMPTOTIC QUANTUM COMMUNICATION

A. One-shot ε-error capacity and finite resource trade-off

In this section we are interested in the finite blocklength regime of quantum communication
and focus on codes enabling a state entangled with a reference system to be reliably transmitted.
Suppose Alice shares a maximally entangled state (ΦAiR) with a reference system R to which she
has no access. The goal is to design a quantum coding protocol such that Alice can transfer this
maximally entangled state to Bob with as high fidelity as possible. To this end, Alice needs to
perform some encoding channel EAi→Ao on system Ai to prepare it for input and then transmits
the prepared state EAi→Ao (ΦAiR) through the channel NAo→Bi , resulting in the state NAo→Bi ○

EAi→Ao (ΦAiR). Once Bob receives the state from the channel output, he performs some decoding
channel DBi→Bo , where Bo is some system of the same dimension as Ai. The final state after
Bob’s decoding will be DBi→Bo ○NAo→Bi ○EAi→Ao (ΦAiR). We can also denote encoder EAi→Ao and
decoder DBi→Bo as a general superoperator ΠAiBi→AoBo . Thus the final state can be written as
Π ○N (ΦAiR). Note that Π is a bipartite quantum operation form AiBi to AoBo. Adding different
constraints on Π, such as PPT-preserving (PPT) or non-signalling (NS) constraints [34, 45, 60], we
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FIG. 1: Bipartite operation ΠAiBi→AoBo is equivalently the coding scheme (E ,D) with free extra resources C,
such as entanglement or no-signalling correlations. The whole operation is to simulate a noiseless quantum
channel IAi→Bo using a given noisy quantum channel NAo→Bi and the bipartite code Π.

will obtain different codes. In the following, Ω denotes specific class of codes, i.e., Ω ∈ {NS ∩
PPT,PPT}.

Definition 1 The maximum channel fidelity of N assisted by the Ω-class code are defined by

FΩ (N , k) ∶= sup
Π

Tr (ΦBoR ⋅Π ○N (ΦAiR)) , (2)

where ΦAiR and ΦBoR are maximally entangled states, k = dim∣Ai∣ = dim∣Bo∣ called code size and the
supremum is taken over all the codes in class Ω.

Definition 2 For given quantum channelN and error tolerance ε, the one-shot ε-error quantum capacity
assisted by Ω-class codes is defined by

Q
(1)
Ω (N , ε) ∶= log max{k ∈ N ∶ FΩ (N , k) ≥ 1 − ε} . (3)

The asymptotic quantum capacity is then given by

QΩ (N ) = lim
ε→0

lim
n→∞

1

n
Q
(1)
Ω (N

⊗n, ε) . (4)

Considering PPT (and NS) codes, the maximum channel fidelity is then given by SDP [34],

FΩ (N , k) = max TrJNWAB

s.t. 0 ≤WAB ≤ ρA ⊗ 1B,TrρA = 1,

PPT: − k−1ρA ⊗ 1B ≤W TB
AB ≤ k−1ρA ⊗ 1B,

NS: TrAWAB = k−21B.

(5)

Proposition 3 For any quantum channelNA′→B and given error tolerance ε, its one-shot ε-error quantum
capacity with PPT codes can be simplified as an optimization problem:

Q
(1)
PPT (N , ε) = − log min m

s.t. TrJNWAB ≥ 1 − ε,0 ≤WAB ≤ ρA ⊗ 1B,

TrρA = 1,−mρA ⊗ 1B ≤W TB
AB ≤mρA ⊗ 1B.

(6)

If the codes are also non-signalling, we can have the same optimization forQ(1)PPT∩NS (N , ε) with additional
constraint TrAWAB =m21B .
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Proof This result can be easily proved by combining Eq. (3) and (5). It is worth noting that Eq. (6)
is not an SDP in general, due to the non-linear term mρA and the condition TrAWAB = m21B .
But in the following discussions, we will have several methods to relax them to semidefinite
conditions. ⊓⊔

B. Improved SDP converse bounds for quantum communication

To better evaluate the quantum communication rate with finite resources, we introduce some
SDP converse bounds for quantum communication with the assistance of PPT (and NS) codes.
We then prove in Theorem 4 that our SDP bounds are tighter than the one introduced in Ref. [40].
Examples have been given in the next subsection to show that our bounds can be strictly tighter.

Specifically, the authors in Ref. [40] show that − log f (N , ε) is a converse bound on one-shot
ε-error quantum capacity, i.e., Q(1) (N , ε) ≤ − log f (N , ε) where

f (N , ε) = min TrSA

s.t. TrWABJN ≥ 1 − ε, SA,ΘAB ≥ 0,TrρA = 1,

0 ≤WAB ≤ ρA ⊗ 1B, SA ⊗ 1B ≥WAB +ΘTB
AB.

(7)

Here, we introduce a hierarchy of SDP converse bounds on the one-shot ε-error capacity based
on the optimization (6). If we relax the termmρA to a single variable SA, we obtain g (N , ε), where

g (N , ε) ∶= min TrSA

s.t. TrJNWAB ≥ 1 − ε,0 ≤WAB ≤ ρA ⊗ 1B,

TrρA = 1,−SA ⊗ 1B ≤W TB
AB ≤ SA ⊗ 1B.

(8)

In particular, if we further consider the NS condition TrAWAB = m21B , we can have two
different relaxations. The first one is to substitute it with TrAWAB = t1B and get the SDP g̃ (N , ε)
while the second method is to introduce a prior constant m̂ satisfying the inequality

Q
(1)
PPT∩NS (N , ε) ≤ − log m̂ (9)

and get the SDP ĝ (N , ε). Note that the second method can provide a tighter bound, but it requires
one more step of calculation since we need to give the prior constant m̂. Successively refining the
value of m̂ will result in a tighter bound.

g̃ (N , ε) ∶= min TrSA

s.t. TrJNWAB ≥ 1 − ε,0 ≤WAB ≤ ρA ⊗ 1B,

TrρA = 1,−SA ⊗ 1B ≤W TB
AB ≤ SA ⊗ 1B,

TrAWAB = t1B.

(10)

ĝ (N , ε) ∶= min TrSA

s.t. TrJNWAB ≥ 1 − ε,0 ≤WAB ≤ ρA ⊗ 1B,

TrρA = 1,−SA ⊗ 1B ≤W TB
AB ≤ SA ⊗ 1B,

TrAWAB = t1B, t ≥ m̂
2.

(11)

Theorem 4 For any quantum channel N and error tolerance ε, the inequality chain holds

Q(1) (N , ε) ≤ Q(1)PPT∩NS (N , ε) ≤ − log ĝ (N , ε) ≤ − log g̃ (N , ε) ≤ − log g (N , ε) ≤ − log f (N , ε) . (12)
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Proof The first inequality is trivial. The third and fourth inequalities are also easy to obtain since
minimizing over a smaller feasible set gives a larger optimal value.

For the second inequality, suppose the optimal solution of (6) for Q(1)PPT∩NS (N , ε), is taken
at {WAB, ρA,m}. Let SA = mρA, t = m

2. Then we can verify that {WAB, ρA, SA, t} is a feasible
solution to the SDP (11) of ĝ (N , ε). So ĝ (N , ε) ≤ TrSA = m, which implies Q(1)PPT∩NS (N , ε) =

− logm ≤ − log ĝ (N , ε).
For the last inequality, we only need to show that f (N , ε) ≤ g (N , ε). Suppose the optimal

solution of g (N , ε) is taken at {ρA, SA,WAB}. Let us choose ΘAB = SA⊗1B−W
TB
AB. Since SA⊗1B ≥

W TB
AB , it is clear that ΘAB ≥ 0 and SA ⊗ 1B = WAB + ΘTB

AB. Thus, {SA, ρA,WAB,ΘAB} is a feasible
solution to the SDP (7) of f (N , ε) which implies f (N , ε) ≤ TrSA = g (N , ε). ⊓⊔

C. Examples: amplitude damping channel and depolarizing channel

In this subsection, we study the examples of amplitude damping channel and depolarizing
channel. We show in Fig. 2 that for the amplitude damping channel NAD, our converse bound
− log g̃ (N , ε) and − log g (N , ε) are both tighter than − log f (N , ε). For the depolarizing chan-
nel ND, exploiting its symmetry, we can further simplify its SDPs into linear programs. Thus
converse bounds − log f (N⊗n, ε), − log g (N⊗n, ε), − log g̃ (N⊗n, ε), − log ĝ (N⊗n, ε) can be easily
calculated for the n-fold tensor product depolarizing channel, N⊗n

D . We show in Fig. 3 that the
converse bound − log ĝ (N⊗n, ε) can be strictly tighter than − log g (N⊗n, ε) after a few times of
successive refinement of the value m̂.

Example For the amplitude damping channel NAD = ∑
1
i=0Ei ⋅ E

†
i with E0 = ∣0⟩⟨0∣ +

√
1 − r∣1⟩⟨1∣,

E1 =
√
r∣0⟩⟨1∣ (0 ≤ r ≤ 1), the differences among − log f (N⊗2

AD,0.01), − log g (N⊗2
AD,0.01) and

− log g̃ (N⊗2
AD,0.01), are presented in Fig. 2. When r ∈ (0.082,0.094), − log g̃ (N⊗2

AD,0.01) ≤

− log g (N⊗2
AD,0.01) < 1 < − log f (N⊗2

AD,0.01). It shows that we cannot transmit a single qubit
within error tolerance ε = 0.01 via 2 copies of amplitude damping channel where parameter
r ∈ (0.082,0.094). However, this result is not indicated by the converse bound − log f (N⊗2

AD,0.01).
⊓⊔

0.06 0.07 0.08 0.09 0.1

Channel parameter r

0.9

0.95

1

1.05

1.1

1.15

Q
u
b
it

0.082 0.0940.082 0.0940.082 0.0940.082 0.0940.082 0.0940.082 0.0940.082 0.0940.082 0.0940.082 0.0940.082 0.0940.082 0.094

FIG. 2: This figure demonstrates the differences among the SDP converse bounds (i) − log f (N⊗2
AD,0.01)

(blue solid), (ii) − log g (N⊗2
AD,0.01) (red dashed), (iii) − log g̃ (N⊗2

AD,0.01) (yellow dotted), where the channel
parameter r ranges from 0.05 to 0.1.



7

Example For the qubit depolarizing channel ND (ρ) = (1 − p)ρ + p
3 (XρX + Y ρY +ZρZ), where

X,Y,Z are Pauli matrices, the Choi matrix of ND is JN = d ((1 − p)Φ +
p

d2−1
Φ⊥), where d = 2,

Φ = 1
d ∑

d−1
i,j=0 ∣ii⟩⟨jj∣ and Φ⊥ = 1AB −Φ. For the n-fold tensor product depolarizing channel, its Choi

matrix is J⊗nN = dn∑ni=0 fiP
n
i (Φ,Φ⊥), where fi = (1 − p)i ( p

d2−1
)
n−i

and Pni (Φ,Φ⊥) represent the
sum of those n-fold tensor product terms with exactly i copies of Φ. For example,

P 3
1 (Φ,Φ⊥) = Φ⊥ ⊗Φ⊥ ⊗Φ +Φ⊥ ⊗Φ⊗Φ⊥ +Φ⊗Φ⊥ ⊗Φ⊥. (13)

Suppose {WAB, ρA, SA} is the optimal solution to the SDP (8) for the channelN⊗n
D , then for any

local unitary U = ⊗
n
i=1U

i
A ⊗ U

i
B , UA = ⊗

n
i=1U

i
A, we know that {UWU†, UAρAU

†
A, UASAU

†
A} is also

optimal. Convex combinations of optimal solutions remain optimal. Without loss of generality,
we can take the optimal solution to be invariant under any local unitary U and UA, respectively.
Again, since J⊗nN is invariant under the symmetric group, acting by permuting the tensor factors.
We can finally take the optimal solution as W = ∑

n
i=0wiP

n
i (Φ,Φ⊥), ρA = 1A/d

n, SA = s1A.
Note that Pni (Φ,Φ⊥) are orthogonal projections. Thus without considering degeneracy, oper-

ator W has eigenvalues {wi}
n
i=0. Next, we need to know the eigenvalues of W TB . Decomposing

operators ΦTB and Φ⊥TB into orthogonal projections, i.e.,

ΦTB =
1

d
(P+ − P−) , Φ⊥TB = (1 −

1

d
)P+ + (1 +

1

d
)P− (14)

where P+ and P− are symmetric and anti-symmetric projections respectively and collecting the
terms with respect to Pnk (P+, P−), we have

W TB =
n

∑
i=0

wiP
n
i (ΦTB ,Φ⊥TB) =

n

∑
k=0

(
n

∑
i=0

xi,kwi)P
n
k (P+, P−) , where (15)

xi,k =
1

dn

min{i,k}
∑

m=max{0,i+k−n}
(
k

m
)(
n − k

i −m
) (−1)i−m (d − 1)k−m (d + 1)n−k+m−i . (16)

Since Pnk (P+, P−) are also orthogonal projections, W TB has eigenvalues {tk}
n
k=0 (without con-

sidering degeneracy), where tk = ∑ni=0 xi,kwi. As for the constraint TrJ⊗nN WAB ≥ 1 − ε, we have

TrJ⊗nN W = dnTr
n

∑
i=0

fiwiP
n
i (Φ,Φ⊥) = dn

n

∑
i=0

(
n

i
) (1 − p)i pn−iwi ≥ 1 − ε. (17)

Finally, substitute η = sdn and mi = wid
n. We obtain the linear program

g (N⊗n
D , ε) = min η

s.t.
n

∑
i=0

(
n

i
) (1 − p)i pn−imi ≥ 1 − ε,

0 ≤mi ≤ 1, i = 0,1,⋯, n,

−η ≤
n

∑
i=0

xi,kmi ≤ η, k = 0,1,⋯, n.

(18)

Following a similar procedure, we have
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f (N
⊗n
D , ε) = min η

s.t.
n

∑
i=0

(
n

i
) (1 − p)i pn−imi ≥ 1 − ε,

mi + si ≤ η, i = 0,1,⋯, n,

η ≥ 0, 0 ≤mi ≤ 1, i = 0,1,⋯, n
n

∑
i=0

xi,ksi ≥ 0, k = 0,1,⋯, n.

ĝ (N⊗n
D , ε) = min η

s.t.
n

∑
i=0

(
n

i
) (1 − p)i pn−imi ≥ 1 − ε,

0 ≤mi ≤ 1, i = 0,1,⋯, n,

− η ≤
n

∑
i=0

xi,kmi ≤ η, k = 0,1,⋯, n,

1

d2n

n

∑
i=0

(
n

i
)(d2

− 1)
n−i

mi ≥ m̂
2.

Since − log ĝ (N⊗n
D , ε) is a converse bound for any m̂ ≤ 2−Q

(1)
PPT∩NS(N⊗nD ,ε), we can successively

refine the value of m̂ and obtain a tighter result. Denote m̂i and ĝi (N
⊗n
D , ε) the value of m̂ and

ĝ (N⊗n
D , ε) in the i-th iteration. First, we take initial value of m̂1 = g (N⊗n

D , ε) and get the result
ĝ1 (N

⊗n
D , ε). Then set m̂i+1 = ĝi (N

⊗n
D , ε) and get result ĝi+1 (N

⊗n
D , ε). In Fig. 3, we show that after

five iterations, we can get a converse bound − log ĝ5 (N
⊗n
D , ε) strictly tighter than − log f (N⊗n

D , ε).
Especially, when n = 17, − log ĝ5 (N

⊗n
D , ε) < 1 < − log f (N⊗n

D , ε). It shows that we cannot transmit
a single qubit within error tolerance ε = 0.004 via 17 copies of depolarizing channel where param-
eter p = 0.2. However, this result is not indicated by the converse bound − log f (N⊗n

D , ε). ⊓⊔

5 10 15 20 25 30

Number of channel copies, n

0

0.5

1

1.5

2

2.5

Q
u
b
it

17 27

FIG. 3: This figure demonstrates the differences between the SDP converse bounds − log f (N⊗nD ,0.004)

(blue dots) and − log ĝ5 (N⊗nD ,0.004) (red dots), where the channel parameter p = 0.2 and the number of
channel uses ranges from 1 to 30.

IV. STRONG CONVERSE BOUND FOR QUANTUM COMMUNICATION

In this section, we introduce an SDP strong converse bound QΓ (N ) to evaluate the quan-
tum capacity for general quantum channels. We summarize our strong converse bound with
other well-known bounds in Tab. I. Among those efficiently computable strong converse bound
for general channels, we prove that QΓ (N ) is better than the partial transpose bound and re-
mark that it is also strictly tighter than the entanglement-assisted quantum capacity in the case of
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entanglement-breaking channels with non-zero classical capacity. The relation with Rains infor-
mation is also obtained.

A. An SDP strong converse bound on quantum capacity

Proposition 5 For any quantum channel N and error tolerance ε,

Q
(1)
PPT (N , ε) ≤ QΓ (N ) − log (1 − ε) , (19)

where QΓ (N ) ∶= log Γ (N ) and

(Primal) Γ (N ) = max{TrJNRAB ∶ RAB, ρA ≥ 0,TrρA = 1,−ρA ⊗ 1B ≤ RTBAB ≤ ρA ⊗ 1B.} (20)

(Dual) Γ (N ) = min{µ ∶ YAB, VAB ≥ 0, (VAB − YAB)
TB ≥ JN ,TrB (VAB + YAB) ≤ µ1A.} (21)

Proof Suppose the optimal solution in the optimization (6) of Q
(1)
PPT (N , ε) is taken at

{WAB, ρA,m}, then Q
(1)
PPT (N , ε) = − logm. Denote RAB = 1

mWAB and we can verify that
{RAB, ρA} is a feasible solution to the SDP (20). Thus

QΓ (N ) ≥ log TrJNRAB = log
1

m
TrJNWAB ≥ log

1

m
(1 − ε) = Q

(1)
PPT (N , ε) + log (1 − ε) .

This concludes the proof. The dual problem can be derived via Lagrange multiplier method. ⊓⊔

Proposition 6 For any quantum channel N1 and N2, QΓ is additive, i.e.,

QΓ (N1 ⊗N2) = QΓ (N1) +QΓ (N2) . (22)

Proof We only need to show that Γ (N1 ⊗N2) = Γ (N1)Γ (N2). For the primal problem (20),
suppose the optimal solutions of (20) for the channelN1 andN2 are taken at {R1, ρ1} and {R2, ρ2},
respectively. Then we can verify that {R1 ⊗R2, ρ1 ⊗ ρ2} is a feasible solution of Γ (N1 ⊗N2). Thus
Γ (N1 ⊗N2) ≥ Tr (JN1 ⊗ JN2) (R1 ⊗R2) = Γ (N1)Γ (N2).

For the dual problem (21), suppose the optimal solutions of (21) for the channelN1 andN2 are
taken at {V1, Y1, µ1} and {V2, Y2, µ2}. Denote V = V1⊗V2+Y1⊗Y2 and Y = V1⊗Y2+Y1⊗V2. Then we
can verify that {V,Y,µ1µ2} is a feasible solution of Γ (N1 ⊗N2). Thus Γ (N1 ⊗N2) ≤ Γ (N1)Γ (N2).

⊓⊔

Theorem 7 For any quantum channelN ,QΓ (N ) is a converse bound on PPT-asssited quantum capacity,

Q (N ) ≤ QPPT (N ) ≤ QΓ (N ) . (23)

Moreover, QΓ (N ) is a strong converse bound. That is, if the rate exceeds QΓ (N ), the error probability
will approach to one exponentially fast as the number of channel uses increase.

Proof We first show that QΓ (N ) is a converse bound and then prove that it is a strong converse.
From Eq. (19), take regularization on both sides, we have

QPPT (N ) = lim
ε→0

lim
n→∞

1

n
Q
(1)
PPT (N

⊗n, ε)

≤ lim
ε→0

lim
n→∞

1

n
[QΓ (N

⊗n) − log (1 − ε)]

= QΓ (N ) .

(24)



10

In the last line, we use the additivity of QΓ in Proposition 6.
For the n-fold quantum channel N⊗n, suppose its achievable rate is r. From Eq. (19), we have

nr ≤ nQΓ (N ) − log (1 − ε), which implies

ε ≥ 1 − 2n(QΓ(N )−r). (25)

If r > QΓ (N ), the error will exponentially converge to one as n goes to infinity. ⊓⊔

Remark For d-dimensional noiseless quantum channel Id, we can show Q (Id) = QΓ (Id) = log d.

B. Comparison with other converse bounds

There are several well-known converse bounds on quantum capacity. In this subsection, we
compare them with our SDP strong converse bound QΓ. Especially, we obtain an inequality chain
among the strong converse bound QΓ, channel’s Rains information R and partial transposition
bound QΘ.

Strong converse Efficiently computable For general channels

QΓ 3 3 3

R 3 ? (max-min) 3

ε-DEG ? 3 7

EC 3 ? (regularization) 3

QE 3 3 3

Qss ? ? (unbounded dimension) 3

QΘ 3 3 3

TABLE I: Comparison of converse bounds on quantum capacity. The check mark represents that the
property holds while the cross mark represents that the property does not hold. The question mark represents
the unknown result. The words in the bracket explain the difficulty that stops us to make it computable.
The shaded rows indicate the bounds we particularly discuss in the following part.

The channel’s Rains information, denoted as R, is proved to be a strong converse bound on
quantum capacity. However, it is not known to be efficiently computable for general quantum
channels due to its max-min optimization form.

R (N ) ∶= max
ρA∈S(A)

min
σ∈PPT’

D (NA′→B (φAA′) ∥σ) , (26)

where φAA′ is a purification of ρA and the set PPT’ = {σ ∈ P (A⊗B) ∶ ∥σTB∥
1
≤ 1}.

An efficiently computable converse bound (abbreviated as ε-DEG) is given by the concept
of approximate degradable channel [20]. This bound usually works very well for approximate
degradable quantum channels such as low-noise qubit depolarizing channel. See Ref. [61? ] for
some recent works based on this approach. Otherwise, it will degenerate to a trivial upper bound.
We can easily show an example that QΓ can be smaller than ε-DEG bound, e.g., the channelNr in
Eq. (42) with 0 < r < 0.38. Also, it is unknown whether ε-DEG bound is a strong converse.

The entanglement cost of a quantum channel [62], denoted as EC , is proved to be a strong
converse bound. But it is not known to be efficiently computable for general channels, due to its
regularization.

Entanglement-assisted quantum capacity, denoted as QE , is also a strong converse for the
unassisted quantum capacity [32, 63]. Moreover, it holds that QE (N ) = 1

2CE (N ), where CE
is the entanglement-assisted classical capacity which is efficiently computable [64].
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Quantum capacity with symmetric side channels [19], denoted as Qss, is also an important
converse bound for general channels. But it is not known to be computable due to the potentially
unbounded dimension of the side channel. It is also not known to be a strong converse.

Another previously known efficiently computable strong converse bound for general channels
is given by the partial transposition bound,

QΘ (N ) ∶= log ∥N ○ T ∥♢ , (27)

where T is transpose map and ∥ ⋅ ∥♢ is the completely bounded trace norm, which is known to be
efficiently computable by SDP in Ref. [65].

Theorem 8 For any quantum channel N , it holds

Q (N ) ≤ R (N ) ≤ QΓ (N ) ≤ QΘ (N ) . (28)

The first inequality has been proved in Ref. [16]. We prove the second inequality in Corollary 10
and the third inequality in Proposition 11.

In the following proof, we need to introduce an entanglement measure EW which is defined
in Ref. [43]. We will see that the strong converse bound QΓ is a channel analogue of entangle-
ment measure EW and can be further reformulated into a similar form as the Rains information.
Specifically, for any bipartite quantum state ρAB , EW (ρ) ∶= logW (ρ) where

(Primal) W (ρ) = max{TrρRAB ∶ ∣RTBAB ∣ ≤ 1,RAB ≥ 0} , (29)

(Dual) W (ρ) = min{∥XTB
AB∥

1
∶XAB ≥ ρAB} . (30)

The max-relative entropy of two operators ρ ∈ S≤ (A), σ ∈ P (A) is defined by [66]

Dmax (ρ∥σ) ∶= log min{µ ∶ ρ ≤ µσ}. (31)

Proposition 9 For any quantum channel N , it holds

QΓ (N ) = max
ρA∈S(A)

EW (NA′→B (φAA′)) = max
ρ∈S(A)

min
σ∈PPT′

Dmax (NA′→B (φAA′) ∥σAB) , (32)

where φAA′ is a purification of ρA and the set PPT’ = {σ ∈ P (A⊗B) ∶ ∥σTB∥
1
≤ 1}.

Proof Consider purification φAA′ = ρ
1/2
A ΦAA′ρ

1/2
A (= ρ

1/2
A′ ΦAA′ρ

1/2
A′ ), then

NA′→B (φAA′) = NA′→B (ρ
1/2
A ΦAA′ρ

1/2
A ) = ρ

1/2
A NA′→B (ΦAA′)ρ

1/2
A = ρ

1/2
A JNρ

1/2
A . (33)

Take JN = ρ
−1/2
A NA′→B (φAA′)ρ

−1/2
A into the definition of QΓ (N ) (20) and substitute FAB =

ρ
−1/2
A RABρ

−1/2
A , we have

QΓ (N ) = log max TrNA′→B (φAA′)FAB

s.t. FAB, ρA ≥ 0,TrρA = 1,−1AB ≤ F TBAB ≤ 1AB
(34)

Due to the definition of EW (29), we have

QΓ (N ) = max
ρA∈S(A)

EW (NA′→B (φAA′)) . (35)
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On the other hand, the following equality chain holds

EW (ρ) = log min{∥XTB∥
1
∶ ρ ≤X}

= log min{µ ∶ ρ ≤X, ∥XTB∥
1
≤ µ}

= log min{µ ∶ ρ ≤ µσ, ∥µσTB∥
1
≤ µ}

= log min{µ ∶ ρ ≤ µσ, ∥σTB∥
1
≤ 1}

= min
σ∈PPT’

Dmax (ρ∥σ) .

(36)

The first line follows from Eq. (30). In the second line, we introduce a new variable µ. In the third
line, we substitute X with µσ. The last line follows from the definition of Dmax. This directly
implies that EW (ρ) ≥ R (ρ). We also note that Andreas Winter [67] told us the fact that EW can be
proved to be an upper bound of the Rains bound by some optimization techniques in the past.

Therefore,

QΓ (N ) = max
ρA∈S(A)

EW (NA′→B (φAA′)) = max
ρ∈S(A)

min
σ∈PPT′

Dmax (NA′→B (φA′A) ∥σAB) . (37)

⊓⊔

Remark From this proposition, it is clear that QΓ (N ) vanishes for any entanglement breaking
channel, since any output state NA′→B (φAA′) is separable and EW (NA′→B (φAA′)) = 0. Thus
for any entanglement breaking channel N with non-zero classical capacity, we have QE (N ) =
1
2CE (N ) ≥ 1

2C (N ) > 0 = QΓ (N ).

Corollary 10 For any quantum channel N , it holds R (N ) ≤ QΓ (N ).

Proof Note that D (ρ∥σ) ≤Dmax (ρ∥σ) [66], we have

QΓ (N ) = max
ρ∈S(A)

min
σ∈PPT′

Dmax (NA′→B (φA′A) ∥σAB)

≥ max
ρA∈S(A)

min
σ∈PPT’

D (NA′→B (φAA′) ∥σAB) = R (N ) .
(38)

⊓⊔
Proposition 11 For any quantum channel N , it holds QΓ (N ) ≤ QΘ (N ).

Proof Suppose the optimal solution of SDP (20) is taken at {RAB, ρA}, then Γ (N ) = TrJNRAB =

TrJTBN RTBAB . The completely bounded trace norm can be written as SDP [65],

∥N ○ T ∥♢ = max{
1

2
TrJTBN (X +X†) ∶ (

ρ0 ⊗ 1 X

X† ρ1 ⊗ 1
) ≥ 0, ρ0, ρ1 ∈ S (A) .} (39)

Since −ρA ⊗ 1B ≤ RTBAB ≤ ρA ⊗ 1B , we have

(
ρA ⊗ 1B RTBAB
RTBAB ρA ⊗ 1B

) =
1

2
(

1 1
1 1

)⊗ (ρA ⊗ 1 +R
TB
AB) +

1

2
(

1 −1
−1 1

)⊗ (ρA ⊗ 1 −R
TB
AB) ≥ 0. (40)

So {RTBAB, ρA, ρA} is a feasible solution of SDP (39), which means that

QΘ (N ) = log ∥N ○ T ∥♢ ≥ log Tr(JTBN RTBAB) = log Γ (N ) = QΓ (N ) . (41)

⊓⊔
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In Fig. 4, we compare the converse bound QΓ with QΘ in the case of quantum channel

Nr =
1

∑
i=0

Ei ⋅E
†
i , (42)

where E0 = ∣0⟩⟨0∣ +
√
r∣1⟩⟨1∣ and E1 =

√
1 − r∣0⟩⟨1∣ + ∣1⟩⟨2∣ (0 ≤ r ≤ 0.5). In the following Fig. 4, it is

clear that QΓ (N ) can be strictly tighter than QΘ (N ).
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FIG. 4: This plot demonstrates the difference between converse bounds QΓ (Nr) and QΘ (Nr). The dashed
line depicts QΓ (Nr) while the solid line depicts QΘ (Nr). The parameter r ranges from 0 to 0.5.

V. DISCUSSIONS

In summary, we have derived efficiently computable converse bounds to estimate the capabil-
ity of quantum communication in both non-asymptotic and asymptotic settings by utilizing the
techniques of convex optimization.

We have introduced a hierarchy of SDP converse bounds for the one-shot ε-infidelity quantum
capacity, which improves the previous general SDP converse bound in Ref. [40]. In particular, we
have shown our SDP converse bounds could be strictly better by applying them to some basic
quantum channels such as qubit amplitude damping channel and qubit depolarizing channel.
Furthermore, in the asymptotic setting of quantum communication, we have derived an SDP
strong converse bound for the quantum capacity and compare it with other well-known converse
bounds. In particular, we have proved that our strong converse boundQΓ is always tighter than or
equal to the partial transpose bound [17]. Furthermore, we have refined the SDP strong converse
bound in the form of max-Rains information by connecting it to the SDP entanglement measure
in [43]. Finally, we have established an inequality relationship among the known strong converse
bounds on quantum capacity,

Q (N ) ≤ R (N ) ≤ QΓ (N ) ≤ QΘ (N ) . (43)

However, for the qubit depolarizing channel, the bound QΓ does not work very well. The
best to date converse bound of this particular channel is still given by Refs. [20, 25, 27]. It is of
great interest to use the one-shot SDP converse bound in Eq. (11) to provide a potentially better
upper bound on the quantum capacity of depolarizing channel. Another interesting problem is to
determine the asymptotic quantum capacity assisted by PPT (and NS) codes via the optimization
in Proposition 3.
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