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Quantum Channel Simulation and the Channel’s
Smooth Max-Information

Kun Fang , Xin Wang , Marco Tomamichel , Senior Member, IEEE, and Mario Berta

Abstract— We study the general framework of quantum chan-
nel simulation, that is, the ability of a quantum channel to
simulate another one using different classes of codes. First,
we show that the minimum error of simulation and the one-shot
quantum simulation cost under no-signalling assisted codes are
given by semidefinite programs. Second, we introduce the chan-
nel’s smooth max-information, which can be seen as a one-shot
generalization of the mutual information of a quantum channel.
We provide an exact operational interpretation of the channel’s
smooth max-information as the one-shot quantum simulation cost
under no-signalling assisted codes, which significantly simplifies
the study of channel simulation and provides insights and
bounds for the case under entanglement-assisted codes. Third,
we derive the asymptotic equipartition property of the channel’s
smooth max-information; i.e., it converges to the quantum mutual
information of the channel in the independent and identically
distributed asymptotic limit. This implies the quantum reverse
Shannon theorem in the presence of no-signalling correlations.
Finally, we explore the simulation cost of various quantum
channels.

Index Terms— Quantum channel simulation, quantum
channel coding, no-signalling, max-information, semidefinite
programming.

I. INTRODUCTION

CHANNEL simulation is a fundamental problem in infor-
mation theory. It asks how to use a (noisy) channel from

Alice (A) to Bob (B) to simulate another (noisy) channel also
from A to B [1], [2]. Depending on the different resources
available between A and B, this simulation problem has many
variants.
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For classical channels, Shannon’s noisy channel coding
theorem determines the capability of noisy classical channels
to simulate noiseless ones [3]. Dual to this famous coding
theorem, the ‘reverse Shannon theorem’ concerns the use of
noiseless channels to simulate noisy ones [2]. Specifically,
every channel can be simulated using an amount of classical
communication equal to the capacity of the channel when
there is free shared randomness between A and B in the
asymptotic setting [2]. For quantum channels, the case when
A and B share an unlimited amount of entanglement has been
completely solved by the quantum reverse Shannon theorem
(QRST) [4], [5], which states that the rate to optimally simu-
late a quantum channel in the asymptotic setting is determined
by its entanglement-assisted classical capacity. In the zero-
error scenario [6], using one channel to simulate another
exactly with the aid of no-signalling correlations has been
studied recently in [7]–[9], while the simulation with free
quantum operations that completely preserve positivity of the
partial transpose has been studied in [10]. The problem of
quantum channel simulations via other quantum resources has
also been investigated in [11], [12].

In realistic settings, the number of channel uses is neces-
sarily limited, and it is not easy to perform encoding and
decoding circuits coherently over a large number of qubits in
the near future. Therefore, it is important to characterize how
well we can simulate a quantum channel from another with
finite resources. The first step in this direction is to consider the
one-shot setting. One-shot analysis has recently attracted great
interest in classical information theory (see, e.g., [13], [14])
and quantum information theory (see, e.g., [15]–[23]). In one-
shot information theory, the smooth max-information of a
quantum state [5] and its generalizations [24] are all basic and
useful quantities, which have various applications in quantum
rate distortion theory as well as the physics of quantum many-
body systems.

In this work, we focus on quantum channel simulation in
both the one-shot and asymptotic regimes. The central quan-
tity we introduce is the channel’s smooth max-information.
Our results can be summarized as follows. In Section II,
we introduce the task of channel simulation and its related
quantities. In Section III, we develop a framework for quantum
channel simulation assisted with different codes in the one-
shot regime, where one has access only to a single use of the
quantum channel. In particular, we characterize the minimum
error of channel simulation under the so-called no-signalling
(NS) codes [7], [8], which allow the encoder and decoder
to share non-local quantum correlations. Such codes are
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Fig. 1. General framework of quantum channel simulation.

no-signalling from the sender to the receiver and vice versa,
representing the ultimate limit of quantum codes obey-
ing quantum mechanics and providing converse bounds for
entanglement-assisted codes. The cost of approximately sim-
ulating a channel via noiseless quantum channels under
NS-assisted codes can be characterized as an semidefinite
program (SDP) [25]. In Section IV, we introduce the chan-
nel’s smooth max-information, which can be seen as a one-
shot generalization of the mutual information of a quantum
channel. Notably, this newly introduced entropy has the exact
operational interpretation as the one-shot quantum simulation
cost under NS-assisted codes. Then we prove its asymptotic
equipartition property which directly implies the quantum
reverse Shannon theorem in the presence of no-signalling
correlations.

In the setting of the entanglement-assisted one-shot capacity
of quantum channels, Matthews and Wehner gave a converse
bound in terms of the channel’s hypothesis testing relative
entropy [18]. Moreover, a subset of us recently showed that
the activated NS-assisted one-shot capacity is exactly given
by the channel’s hypothesis testing relative entropy [26] –
generalizing the corresponding classical results [13], [27].
This suggests that the operational min- and max-type one-
shot analogues of the channel’s mutual information are the
channel’s hypothesis testing relative entropy and the channel’s
smooth max-information, respectively.

In Section V, as applications, we evaluate the cost of sim-
ulating fundamental quantum channels with finite resources.
In particular, we derive a linear program to evaluate the finite
blocklength simulation cost of quantum depolarizing channels.

II. CHANNEL SIMULATION AND CODES

Let us now formally introduce the task of channel simu-
lation and some basic notations. A quantum channel (quan-
tum operation) N A→B is a completely positive (CP) and
trace-preserving (TP) linear map from operators acting on a
finite-dimensional Hilbert space HA to operators acting on
a finite-dimensional Hilbert space HB . For any CPTP map
NA→B , we will frequently use its Choi-Jamiołkowski matrix,
which is defined as JN := ∑|A|−1

i, j=0 |i�� j | ⊗ NA→B (|i�� j |)
where {|i�} are orthonormal basis in HA.

The general framework of quantum channel simulation is
shown in Fig. 1. Here is how the simulation works. First, Alice
performs some pre-processing via an encoder E on the input
system Ai and outputs a quantum system Ao. Then she sends
the output system to the shared quantum channel NAo→Bi .
At Bob’s side, he receives a quantum system Bi from the

channel and performs his post-precessing via a decoder D.
Finally, Bob outputs a quantum system Bo. The whole process
can be considered as a quantum channel from Alice’s input
Ai to Bob’s output Bo, which we denote as M̃Ai →Bo . The aim
of simulation is to choose the best coding scheme to make
the effective channel M̃Ai →Bo as similar as to the given target
channel M. If we remove the channel N from Fig. 1, we are
left with a map with two inputs Ai , Bi and two outputs Ao, Bo.
We denote this map as �, which generalizes the usual encod-
ing scheme E and decoding scheme D. Then the effective
channel can be written as M̃Ai →Bo = �Ai Bi→Ao Bo ◦NAo→Bi .
Note that � is also known as a bipartite quantum supermap
in some literatures [28]–[30] since it maps a quantum channel
to another quantum channel.

In particular, a bipartite quantum supermap �Ai Bi→Ao Bo is
A to B no-signalling if A cannot send classical information
to B by using �. That is, for any quantum states ρ1,Ai ,
ρ2,Ai and linear operator σBi , we have TrAo �(ρ1,Ai ⊗σBi ) =
TrAo �(ρ2,Ai ⊗ σBi ), which is equivalent to the semidefinite
condition [8] TrAo J� = 1Ai /|Ai | ⊗ TrAo Ai J� with J�
being the Choi-Jamiołkowski matrix of �. Similarly, B to A
no-signalling can be characterized by TrBo J� = 1Bi/|Bi | ⊗
TrBi Bo J�. Note that the bipartite quantum supermap � in
this work is required at least to be B to A no-signalling,
which ensures the composition of � and N leads to another
quantum channel [8], [28]. It is also worth mentioning that
there is an isomorphism from bipartite quantum supermaps
to bipartite quantum operations, and that the corresponding
bipartite quantum operation is required to be no-signalling.

In the task of channel simulation, we say � is an �-
assisted code if it can be implemented by local operations
with �-assistance. In the following, we eliminate � for the
case of unassisted codes. We write � = NS and � = PPT for
NS-assisted and positive-partial-transpose-preserving-assisted
(PPT-assisted) codes, respectively [31], [32]. In particular,

• an unassisted code reduces to the product of encoder and
decoder, i.e., � = DBi→BoEAi →Ao ;

• a NS-assisted code corresponds to a bipartite quantum
supermap which is no-signalling from Alice to Bob and
vice-versa;

• a PPT-assisted code corresponds to a bipartite quantum
supermap whose Choi-Jamiołkowski matrix is positive
under partial transpose over systems Bi Bo.

For any two quantum channels N and M, the minimum
error of simulation from N to M under �-assisted codes is
defined as

ω�(N ,M) := 1

2
inf
�∈� �� ◦ N − M�♦, (1)

where �F�♦ := supk∈N sup�X�1≤1 �(F ⊗ idk)(X)�1 denotes

the diamond norm and �X�1 := Tr
√

X† X denotes the
Schatten 1-norm. The channel simulation rate from N to M
under �-assisted codes is defined as

S�(N ,M) := lim
ε→0

inf
{ n

m

∣∣∣ ω�(N⊗n,M⊗m) ≤ ε
}
, (2)

where the infimum is taken over ratios n
m with n,m ∈ N.

In this framework of channel simulation, the classical capacity
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C(N ) and the quantum capacity Q(N ) of the channel N are
respectively given by

C(N ) = S
(N , îd2

)−1
and Q(N ) = S(N , id2)

−1, (3)

where îd2 is the one-bit noiseless channel and id2 is the
one-qubit noiseless channel.

If we consider simulating the given channel N via an
m-dimensional noiseless quantum channel idm , then the
one-shot ε-error quantum simulation cost under �-assisted
codes is defined as

S(1)�,ε(N ) := log inf
{

m ∈ N | ω�(idm ,N ) ≤ ε
}
, (4)

where the logarithms in this work are taken in the base
two. The asymptotic quantum simulation cost is given by the
regularization

S�(N ) = lim
ε→0

lim
n→∞

1

n
S(1)�,ε(N⊗n). (5)

III. CHANNEL SIMULATION VIA NOISY

QUANTUM CHANNELS

Based on the definitions in the above section, we show
that the minimum error of simulation under NS-assisted (and
PPT-assisted) codes can be given by SDPs. The one-shot
ε-error quantum simulation cost under NS-assisted codes can
also be given by an SDP. These SDPs can be easily imple-
mented for small blocklength and they also lay the foundation
of analysis in the following sections.

Proposition 1 For any two quantum channels N and M
with corresponding Choi-Jamiołkowski matrices JN and JM,
the minimum error of simulation from N to M under
NS-assisted codes ωNS(N ,M) is given by the following SDP,

inf γ (6a)

s.t. TrBo YAi Bo ≤ γ1Ai , (6b)

YAi Bo ≥ JM̃ − JM, YAi Bo ≥ 0, (6c)

JM̃ = TrAo Bi (J
T
N ⊗ 1Ai Bo)J�, (6d)

J� ≥ 0, TrAo Bo J� = 1Ai Bi , (CP,TP) (6e)

Tr Ao J� = 1Ai /|Ai | ⊗ TrAo Ai J�, (A �→ B) (6f)

TrBo J� = 1Bi/|Bi | ⊗ TrBi Bo J�. (B �→ A) (6g)

To obtain ωNS∩PPT(N ,M), we only need to add the PPT

constraint J
TBi Bo
� ≥ 0, where TBi Bo denotes the partial

transpose over systems Bi Bo.

Proof: Note that for any two quantum channels N1,N2
from A to B , the diamond norm of their difference can be
expressed as an SDP of the following form [33]:

1

2
�N1 − N2�♦ = inf

{
γ

∣∣ TrB Y ≤ γ1A,

Y ≥ JN1 − JN2, Y ≥ 0
}
, (7)

where JN1 and JN2 are the corresponding Choi-Jamiołkowski
matrices. We denote the Choi-Jamiołkowski matrix of code
� as J�. From Lemma 13 in the Appendix, we know

that the Choi-Jamiołkowski matrix of the effective channel
M̃ = � ◦ N is given by

JM̃ = TrAo Bi (J
T
N ⊗ 1Ai Bo)J�. (8)

Together with the constraints of the code �, we have the
resulting SDP (6). The constraints in Eq. (6e) represent the
CP and TP conditions of the bipartite supermap �. The con-
straints in Eqs. (6f) and (6g) represent the no-signalling
conditions that A cannot signal to B and B cannot signal to A,
respectively.

Corollary 2 The minimum error to simulate a quantum chan-
nel N via a noiseless quantum channel under NS-assisted
codes ωNS(idm ,N ) is given by the following SDP,

inf γ (9a)

s.t. TrB YAB ≤ γ1A, (9b)

YAB ≥ JÑ − JN , YAB ≥ 0, (9c)

JÑ ≥ 0, TrB JÑ = 1A, (9d)

JÑ ≤ 1A ⊗ VB, Tr VB = m2. (9e)

To obtain ωNS∩PPT(idm,N ), we only need to add the PPT
constraint −1A ⊗ V T

B ≤ m J TB

Ñ ≤ 1A ⊗ V T
B .

Proof: Denote the Choi-Jamiołkowski matrix of idm as
Jm = ∑m−1

i, j=0 |i i�� j j |Ao Bi . Then J T
m = Jm and the SDP for

the minimum error ωNS(idm ,N ) can be restated as

inf γ (10a)

s.t. TrBo YAi Bo ≤ γ1Ai , (10b)

YAi Bo ≥ JÑ − JN , YAi Bo ≥ 0, (10c)

JÑ = TrAo Bi (Jm ⊗ 1Ai Bo)J�, (10d)

J� ≥ 0, TrAo Bo J� = 1Ai Bi , (CP,TP) (10e)

TrAo J� = 1Ai /|Ai | ⊗ TrAo Ai J�, (A �→ B) (10f)

TrBo J� = 1Bi/|Bi | ⊗ TrBi Bo J�, (B �→ A) (10g)

where the dimensions of Ao and Bi are equal to m.
The main idea to do the simplification is to utilize the

symmetry of the noiseless quantum channel, i.e., the invariance
of Jm under any local unitary UAo ⊗ U Bi . Suppose J� is
optimal for SDP (10), we can check that (UAo ⊗U Bi )J�(UAo ⊗
U Bi )

† is also optimal. Any convex combination of optimal
solutions remains optimal. Thus, without loss of generality
we can take [31], [34],

J� =
∫

dU(UAo ⊗ U Bi )J�(UAo ⊗ U Bi )
† (11)

= Jm

m
⊗ HAi Bo + (1Ao Bi − Jm

m
)⊗ K Ai Bo, (12)

where the integral is taken over the Haar measure and H , K
are operators on system Ai Bo.

Note that Jm · Jm = m Jm . Taking Eq. (11) into the
condition (10d), we obtain that

Condition (10d) ⇐⇒ JÑ = m H. (13)
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Taking Eq. (11) into the condition (10e), we have the equiva-
lence

Condition (10e) ⇐⇒ H ≥ 0, K ≥ 0,

and TrBo(H + (m2 − 1)K ) = m1Ai . (14)

Since JÑ is the Choi-Jamiołkowski matrix of the effective
channel, we have TrBo JÑ = TrBo m H = 1Ai . Combining
TrBo(H + (m2 − 1)K ) = m1Ai , we have TrBo mK = 1Ai .
This implies that the condition (10g) is trivial and

Condition (10f) ⇐⇒ H + (m2 − 1)K =
1Ai /|Ai | ⊗ TrAi (H + (m2 − 1)K ). (15)

So far we have the simplified SDP as

inf γ (16a)

s.t. TrBo YAi Bo ≤ γ1Ai , (16b)

YAi Bo ≥ JÑ − JN , YAi Bo ≥ 0, (16c)

JÑ = m HAi Bo, (16d)

TrBo JÑ = 1Ai (16e)

H ≥ 0, K ≥ 0, TrBo mK = 1Ai , (16f)

H + (m2 − 1)K = 1Ai /|Ai |⊗
TrAi (H + (m2 − 1)K ) (16g)

Denote VBo = m TrAi (H + (m2 − 1)K )/|Ai |. By condi-
tions (16g), we have

(m2 − 1)mK = 1Ai ⊗ VBo − m H. (17)

Together with the condition (16d), we can eliminate the
variables K and H in the above SDP. Finally, replacing the
subscript Ai to A and Bo to B , we have the desired SDP (9).

As for the PPT condition J
TBi Bo
� ≥ 0, we have J

TBi
m /m ⊗

H TBo + (1 − J
TBi
m /m) ⊗ K TBo ≥ 0 from Eq. (11). Note that

J
TBi
m is the swap operator and we can decompose it into the

sum of two orthogonal positive parts, i.e., J
TBi
m = J+ − J−

where J+ ≥ 0, J− ≥ 0 and J+ + J− = 1. Then the PPT
condition is equivalent to J+ ⊗[H TBo + (m − 1)K TBo ]+ J− ⊗
[−H TBo + (m + 1)K TBo ] ≥ 0. Thus −(m − 1)K TBo ≤ H TBo ≤
(m + 1)K TBo . Combining with Eqs. (16d) and (17), we have
−1Ai ⊗ V T

Bo
≤ m J

TBo

Ñ ≤ 1Ai ⊗ V T
Bo

.
From the definition of one-shot quantum simulation cost

and Corollary 2, we have the following result.

Proposition 3 For any quantum channel N and error toler-
ance ε ≥ 0, the one-shot ε-error quantum simulation cost
under NS-assisted codes is given by the following SDP,

S(1)NS,ε(N ) = log inf
⌈√

Tr VB

⌉
(18a)

s.t. TrB YAB ≤ ε1A, (18b)

YAB ≥ JÑ − JN , YAB ≥ 0, (18c)

JÑ ≥ 0, TrB JÑ = 1A, (18d)

JÑ ≤ 1A ⊗ VB . (18e)

It is easy to check that δ = log�x� − log x ∈ [0, 1] for any
x ≥ 1. Thus we can use the least constant δ ∈ [0, 1] to

adjust the r.h.s. of Eq. (18) to be the logarithm of an integer.
That is,

S(1)NS,ε(N ) = δ +
1

2
log inf Tr VB (19a)

s.t. TrB YAB ≤ ε1A, (19b)

YAB ≥ JÑ − JN , YAB ≥ 0, (19c)

JÑ ≥ 0, TrB JÑ = 1A, (19d)

JÑ ≤ 1A ⊗ VB . (19e)

Note that the one-shot quantum simulation cost under
NS∩PPT-assisted codes is not an SDP, since the objective
function m appears in the conditions Tr VB = m2 and −1A ⊗
V T

B ≤ m J TB

Ñ ≤ 1A ⊗ V T
B with different powers. We do not

see a way to obtain a linear objective function.
It is also worth mentioning that the zero-error quantum

simulation cost was studied by Duan and Winter in [8].
The authors show that the zero-error NS-assisted simulation
cost is given by the conditional min-entropy of the channel’s
Choi-Jamiołkowski matrix [8, Theorem 2]. The result we
obtained in Proposition 3 is more general and can reduce to
the zero-error case by letting ε = 0. More specifically, taking
ε = 0 will lead to YAB = 0 and thus JÑ = JN . Then we
have

S(1)NS,0(N ) = 1

2
log inf { Tr VB | JN ≤ 1A ⊗ VB} + δ, (20)

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the
logarithm of an integer. Since the conditional min-entropy is
additive (see [15]), we have

SNS,0(N ) := lim
n→∞

1

n
S(1)NS,0(N⊗n) (21)

=1

2
log inf { Tr VB | JN ≤ 1A ⊗ VB} . (22)

Remark 1 In the next section, we will see that the zero-
error NS-assisted simulation cost could also be considered to
be the max-information of the channel’s Choi-Jamiołkowski
state based on Eqs. (29) and (34).

IV. THE CHANNEL’S MAX-INFORMATION AND ITS

ASYMPTOTIC EQUIPARTITION PROPERTY

In this section, we introduce a novel entropy called the
channel’s smooth max-information and show that it has an
operational interpretation regarding the quantum simulation
cost of a channel. Furthermore, we prove the asymptotic
equipartition property (AEP) of the channel’s smooth max-
information and explore its close relation to the well-known
quantum reverse Shannon theorem (QRST).

Some basic notations will be used in this section. The set
of sub-normalized quantum states is denoted as S≤(A) :=
{ ρ ≥ 0 | Tr ρ ≤ 1 }. The set of quantum states is denoted as
S=(A) := { ρ ≥ 0 | Tr ρ = 1 }. We denote ρA as the reduced
state of ρAB , i.e. ρA := TrB ρAB . The purified distance based
on the generalized fidelity is given by [15]

P(ρ, σ ) :=
√

1 − F2(ρ, σ ) with (23)

F(ρ, σ ) :=�ρ1/2σ 1/2�1 + √
(1 − Tr ρ)(1 − Tr σ). (24)
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We say ρ and σ are ε-close and write ρ ≈ε σ if and only if
P(ρ, σ ) ≤ ε.

A. The Channel’s Max-Information

The max-relative entropy of ρ ∈ S≤(A) with respect to
σ ≥ 0 is defined as [35], [36]

Dmax(ρ�σ) := inf
{

t | ρ ≤ 2t · σ }
, (25)

which is a one-shot generalization of the equantum relative
entropy

D(ρ�σ) := Tr ρ(logρ − log σ) (26)

if supp(ρ) ⊆ supp(σ ) and +∞ otherwise. The max-
information that B has about A for ρAB ∈ S≤(AB) is
defined as [5]

Imax(A : B)ρ := inf
σB∈S=(B)

Dmax(ρAB�ρA ⊗ σB), (27)

which is a one-shot generalization of the quantum mutual
information

I (A : B)ρ := inf
σB∈S=(B)

D(ρAB�ρA ⊗ σB). (28)

Definition 4 For any quantum channel NA�→B we define the
channel’s max-information of N as

Imax(A : B)N := Imax(A : B)NA�→B (
AA� ), (29)

where 
AA� = 1
|A|

∑|A|−1
i, j=0 |i Ai A� �� jA jA� | is the maximally

entangled state on AA�.

Remark 2 The following argument shows that this definition
does not depend on the input state 
AA� . That is, for any full
rank state φA� with a purification φAA� = |A|√φA
AA�

√
φA,

we have

Imax(A : B)N = Imax(A : B)NA�→B(φAA� ). (30)

From the definitions (25), (27) and (29), we have

Imax(A : B)N = inf t s.t.

NA�→B(
AA� ) ≤ 2t · 1A

|A| ⊗ σB , σB ∈ S=(B). (31)

Since

NA�→B(φAA� ) = |A| · NA�→B(
√
φA 
AA�

√
φA) (32)

= |A| · √
φA NA�→B(
AA� )

√
φA, (33)

the first condition in (31) is equivalent to NA�→B(φAA� ) ≤
2t · φA ⊗ σB , which implies Eq. (30).

Remark 3 Note that the sandwiched Rényi version of
the channel’s mutual information was previously defined in
[37], [38]. Our definition of the channel’s max-information is
compatible with the more general one and can be recovered
in the limit of α → ∞ [29].

Comparing Eqs. (20) and (31), we can write the one-shot
zero-error quantum simulation cost as the channel’s max-
information:

S(1)NS,0(N ) = 1

2
Imax(A : B)N + δ, (34)

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the
logarithm of an integer. In the following, we show this relation
beyond the zero-error case. For this, we define the smoothed
version of the channel’s max-information.

Definition 5 For any quantum channel N , we define the
channel’s smooth max-information as

I εmax(A : B)N := inf
1
2 �Ñ−N �♦≤ε

Ñ∈ CPTP(A�:B)

Imax(A : B)Ñ , (35)

where CPTP(A� : B) denotes the set of all CPTP maps
from A� to B.

We show that the one-shot ε-error quantum simulation cost
is completely characterized by the channel’s smooth max-
information. This provides the operational meaning of this new
entropy.

Theorem 6 For any quantum channel N and given error
tolerance ε ≥ 0, it holds that

S(1)NS,ε(N ) = 1

2
I εmax(A : B)N + δ, (36)

where δ ∈ [0, 1] is the least constant such that the r.h.s. is the
logarithm of an integer.

Proof: We first notice that the constraints in Eq. (19d)
JÑ ≥ 0, TrB JÑ = 1A uniquely define a CPTP map Ñ due
to the Choi-Jamiołkowski isomorphism. Applying the SDP of
diamond norm in (7), we find

S(1)NS,ε(N ) = δ + 1

2
log inf Tr VB (37a)

s.t. 1
2 �Ñ − N�♦ ≤ ε, (37b)

Ñ ∈ CPTP(A� : B), (37c)

JÑ ≤ 1A ⊗ VB . (37d)

From Eqs. (31), we know that

Imax(A : B)N = log inf
{

Tr VB | JN ≤ 1A ⊗ VB
}
. (38)

Combining Eqs. (37) and (38), we obtain the desired
result.

Remark 4 Note that an alternative way to write Eq. (36) is
S(1)NS,ε(N ) = log

⌈√
2I εmax(A:B)N

⌉
.

Remark 5 Since I εmax(A : B)N is introduced as an
entropy of the channel N , it is natural to consider its data-
precessing inequality, i.e., I εmax(A : B)
(N ) ≤ I εmax(A :
B)N for any quantum superchannel 
 [28]. By the opera-
tional meaning above, this is equivalent to S(1)NS,ε(
(N )) ≤
S(1)NS,ε(N ) which can be understood as we need less resources
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to simulate a quantum channel with higher noise. Specif-
ically, this relation can be checked by the definition of
quantum channel simulation cost. Suppose the simulation cost
of N is given by log m. This implies that there exists an
NS-assisted code � such that 1

2�� ◦ idm − N�♦ ≤ ε.
For any quantum superchannel 
, it can be written [28]
as 
(N ) = RBo E→B̄ ◦ (NAi →Bo ⊗ idE ) ◦ F Ā→Ai E with
pre-processing channel F Ā→Ai E and post-processing chan-
nel RBo E→B̄ . Note that the diamond norm is multiplicative
under tensor product, sub-multiplicative under composition
and equals to one for any quantum channels [39]. Then it
holds 1

2�
(� ◦ idm) − 
(N )�♦ ≤ 1
2�� ◦ idm − N�♦ ≤ ε.

This shows that we can use the noiseless channel idm to
simulate 
(N ) under the NS-assisted code 
 ◦ � within
ε error. By definition, we have S(1)NS,ε(
(N )) ≤ log m =
S(1)NS,ε(N ).
Remark 6 Note that the Choi-Jamiołkowski matrix of a con-
stant channel M(ρ) = σ , ∀ρ is given by JM = 1A⊗σB . Thus
from the perspective of quantum resource theory, the channel’s
smooth max-information can be written as the “distance”
between the given channel N and the set of constant channels

G := {M ∈ CPTP(A : B)
∣∣ ∃ σ s.t. M(ρ) = σ,∀ ρ }

. (39)

More specifically, for any quantum channel N , we have

I εmax(A : B)N = min
M∈G

Dε
max(N�M), (40)

where

Dε
max(N�M) := inf

1
2 �Ñ−N �♦≤ε
Ñ∈CPTP(A�:B)

Dmax
(Ñ �M)

(41)

and Dmax(N�M) := Dmax(JN �JM) with Choi-
Jamiołkowski matrices JN , JM. Since the max-relative
entropy is closely related with the robustness [40]—the
minimal mixing required to make the given resource useless,
we can also define the channel’s analogy of robustness as
(see also [41])

Rg(N ) := inf
{

t ≥ 0
∣∣∣ ∃ M ∈CPTP(A : B)

s.t.
N + tM

1 + t
∈ G

}
, (42)

and its smoothed version

Rεg(N ) := inf
1
2 �Ñ−N �♦≤ε
Ñ∈CPTP(A�:B)

Rg
(Ñ )

. (43)

Then the channel’s smooth max-information can be written as

I εmax(A : B)N = log(1 + Rε
g(N )). (44)

B. Asymptotic Equipartition Property and the Quantum
Reverse Shannon Theorem

In the framework of quantum channel simulation, the quan-
tum capacity is given by the optimal rate of using N to
simulate the qubit noiseless channel id2, while the channel

simulation cost is given by the optimal rate of using id2 to
simulate the channel N . Thus, it operationally holds that

QE(N ) ≤ QNS(N ) ≤ SNS(N ) ≤ SE(N ), (45)

where the above four notations represent entanglement-
assisted quantum capacity, NS-assisted quantum capacity,
NS-assisted quantum simulation cost and entanglement-
assisted quantum simulation cost, respectively. The quantum
reverse Shannon theorem [4], [5] states that the quantum
simulation cost is equal to its quantum capacity under
entanglement-assistance, i.e., QE(N ) = SE(N ). In the
following, the quantum reverse Shannon theorem under
NS-assistance means that QNS(N ) = SNS(N ).

The AEP of the channel’s smooth max-information is the
claim that

lim
ε→0

lim
n→∞

1

n
I εmax(A : B)N⊗n = I (A : B)N , (46)

where

I (A : B)N := max
ρA∈S=(A)

I (A : B)NA�→B(φAA� ) (47)

is the mutual information of the quantum channel and φAA�
is a purification of the state ρA. Based on the operational
interpretation in Theorem 6, the definition of asymptotic
simulation cost in Eq. (5) and the known result that QE(N ) =
1
2 I (A : B)N [2], we have

AEP (46) ⇐⇒ QE(N ) = SNS(N ). (48)

Hence the QRST implies the AEP for the channel’s smooth
max-information. On the other hand, we can directly prove
the AEP, as is done in Theorem 8. This proof then implies the
QRST in the presence of NS correlations.

In the following, we utilize the smooth max-information of
a quantum state and its variation:

I εmax(A : B)ρ := inf
ρ̃≈ερ Imax(A : B)ρ̃, (49)

Î εmax(A : B)ρ := inf
ρ̃≈ερ
ρ̃A=ρA

Imax(A : B)ρ̃ . (50)

The first smooth max-information is most often used in the
literature [5], [24]. The second variation naturally appears
in our discussion of the channel simulation problem. The
restricted smoothing such that the marginal state is fixed comes
from the definition of diamond norm where the reference
system of the input state is untouched. Using ideas from [42],
the following lemma shows that these two quantities are
equivalent up to some correction terms. The proof can be
found in Appendix B.

Lemma 7 For any quantum state ρAB and ε ∈ (0, 1), it holds

Î εmax(A : B)ρ ≤ I ε/6max(A : B)ρ + g(ε), (51)

with g(ε) = log(1 + 72/ε2).

Theorem 8 For any quantum channel N we have the AEP
for the channel’s smooth max-information:

lim
ε→0

lim
n→∞

1

n
I εmax(A : B)N⊗n = I (A : B)N . (52)
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Proof: The proof strategy is as follows. We first use the
post-selection technique to show that the channel’s smooth
max-information is upper bounded by the quantity in Eq. (50).
By Eq. (51) we can then use the basic properties of the smooth
max-information developed in [5] to show one direction of the
proof. The other direction can be proved via the continuity of
the mutual information of quantum states.

Consider n uses of the channel N and let ωn
R AA� be the

purification of the de Finetti state ωn
AA� = ∫

σ⊗n
AA� d(σAA� )

with pure states σAA� = |σ ��σ |AA� and d(·) the measure
on the normalized pure states induced by the Haar measure.
Furthermore we can assume without loss of generality that
|R| ≤ (n + 1)|A|2−1 [43]. Note that ωn

A� is a full rank state.
We have the following chain of inequalities

I εmax(A : B)N⊗n

= inf
1
2

∥∥∥Ñ n−N⊗n
∥∥∥♦≤ε

Ñ n∈CPTP(A�n :Bn)

Imax(R A : B)Ñ n(ωn
R AA� ) (53a)

≤ inf
1
2

∥∥∥Ñ n−N⊗n
∥∥∥♦≤ε

Ñ n∈Perm(A�n :Bn)

Imax(R A : B)Ñ n(ωn
R AA� ) (53b)

≤ inf
1
2

∥∥∥(Ñ n−N⊗n)(ωn
R AA� )

∥∥∥
1
≤ε1

Ñ n∈Perm(A�n :Bn)

Imax(R A : B)Ñ n(ωn
R AA� ) (53c)

≤ inf
Ñ n(ωn

R AA� )≈ε2N⊗n(ωn
R AA� )

Ñ n∈Perm(A�n :Bn)

Imax(R A : B)Ñ n(ωn
R AA� ), (53d)

where ε1 = ε(n + 1)−(|A�|2−1) and we take ε2 = ε1. Note that
the discussion works for any 0 < ε2 ≤ ε1. In (53a), we choose
ωn

R AA� as the input state of the channel’s max-information
(30). In (53b), we restrict the channel Ñ n to be permutation
invariant, where Perm(A�n : Bn) := {N n ∈ CPTP(A�n :
Bn) |πn

B ◦ N n ◦ πn
A� = N , for all permutation πn} denotes

the set of all permutation invariant channels. In (53c), we use
post-selection technique (see [5, Prop. D.4]), which relaxes
the diamond norm to the trace norm. In (53d), we replace
the trace norm with the purified distance due to the inequality
1
2�ρ − σ�1 ≤ P(ρ, σ ).

Exploiting the permutation invariance of N⊗n , we know
that the optimal solution of (53d) can be still taken at a per-
mutation invariant channel even if we relax the set Perm(A�n :
Bn) to all CPTP maps, which is then equivalent to optimize
over all quantum states with marginal ωn

R A and ε2-close to
N⊗n(ωn

R AA� ). Specifically, from Lemma 11 in Appendix B,
we know that the optimization in (53d) is equivalent to

inf
σ n

R AB ∈K
Imax(R A : B)σ n

R AB
with (54)

K :=
{
σ n

R AB

∣∣∣ σ n
R AB ≈ε2 N⊗n(ωn

R AA� ), σ n
R A = ωn

R A

}
,

which is exactly the definition of Î ε2
max(R A : B)N⊗n(ωn

R AA� ).
Thus we have

I εmax(A : B)N⊗n ≤ Î ε2
max(R A : B)N⊗n(ωn

R AA� ). (55)

From Eq. (51), denote ε3 = ε2/6, we have

I εmax(A : B)N⊗n ≤ I ε3
max(R A : B)N⊗n(ωn

R AA� ) + g(ε2). (56)

Then we can use some known properties of the smooth max-
information from [5], [24], which leads to

I ε3
max(R A : B)N⊗n(ωn

R AA� )

≤ I ε4
max(B : R A)N⊗n(ωn

R AA� ) + f (ε4) (57a)

≤ I ε4
max(B : A)N⊗n(ωn

AA� ) + 2 log |R| + f (ε4) (57b)

= I ε4
max(B : A)N⊗n(

∑
i∈I pi (σ

i
AA� )⊗n)

+ 2 log |R| + f (ε4) (57c)

≤ max
σ i

AA�
I ε4
max(B : A)N⊗n((σ i

AA� )⊗n)

+ log |I | + 2 log |R| + f (ε4) (57d)

≤ max
σAA�

I ε4
max(B : A)N (σAA� )⊗n

+ log |I | + 2 log |R| + f (ε4), (57e)

where ε4 = ε3/2, f (ε) = log( 1
1−√

1−ε2 + 1
1−ε ) and |I | =

(n+1)2|A||A� |−2. In (57a), we swap the system order according
to [24, Corollary 5]. In (57b), we get rid of purification system
R according to [5, Lemma B.12]. In (57c), we express the inte-
gral ωn

AA� = ∫
σ⊗n

AA� d(σAA� ) into convex combination of finite
number of operators according to [5, Corollary D.6]. In (57d),
we use the quasi-convexity of the smooth max-information
[5, Lemma B.21]. In (57e), we relax the maximization to all
pure states σAA� .

Combining Eqs. (56), (57e) and the AEP for the smooth
max-information from [5, Lemma B.24], we get

lim
ε→0

lim
n→∞

1

n
I εmax(A : B)N⊗n

≤ max
σAA�

I (A : B)N (σAA� ) = I (A : B)N . (58)

On the other hand, suppose the optimal solution of I (A :
B)N is taken at ρA� with a purification φAA� . Since we can
always find a full rank state that is arbitary close to ρA� , thus
it gives the mutual information arbitary close to I (A : B)N
due to the continuty. In the following, we can assume that ρA�
is of full rank without loss of generality and have the chain of
inequalities in (60), as shown at the bottom of the next page,
where h2(·) is the binary entropy. In (60b), we use the fact
that max-relative entropy is never smaller than the relative
entropy [35]. The line (60c) follows from the definition of
the mutual information of a quantum state. The line (60d)
follows from the continuity of quantum mutual information
in Lemma 12 (Appendix B). The line (60e) follows from
the additivity of quantum mutual information. The line (60f)
follows from the assumption that φAA� is the optimizer of
I (A : B)N . Finally, we have

lim
ε→0

lim
n→∞

1

n
I εmax(A : B)N⊗n ≥ I (A : B)N . (59)

Combining Eqs. (58) and (59), we conclude the claim.

After this work there is an alternative proof of Eq. (58) given
by Gour and Wilde in [29]. Their proof uses the sandwiched
Rényi mutual information and its relation with the max-
information, different from the post-selection technique we use
in this work.
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Fig. 2. Exact value by the linear program (80) of the average simulation
cost for three different error tolerances ε ∈ {5 × 10−4, 5 × 10−3, 5 × 10−2}
and the qubit depolarizing channel with failure probability p = 0.15. The
lowest line marks the entanglement-assisted quantum capacity of the channel
(roughly 0.657 qubits per channel use).

V. EXAMPLES

In this section, we apply our results to some basic channels.
For classical channels, the one-shot ε-error quantum simula-
tion cost can be given by a linear program as shown in Eq. (76)
(Appendix A). Using the symmetry of the quantum depolar-
izing channel, we can also simplify its n-shot simulation cost
as a linear program. Moreover, the zero-error simulation cost
of various channels can be solved analytically.
Example 1. The quantum depolarizing channel is given by
Dp(ρ) = (1 − p)ρ + p · 1

d with dimension d . Its Choi-
Jamiołkowski matrix JDp commutes with any local unitary
U ⊗ U and J⊗n

Dp
is invariant under any permutation of the

tensor factors. Exploiting these symmetries, we can simplify
the SDP (18) for D⊗n

p to a linear program (80) in Appendix A.
Numerical implementation is shown in Fig. 2. We can see
that as the number of channel uses n increases, the average
quantum simulation cost will approach to its entanglement-
assisted quantum capacity [44], i.e., half of the quantum
mutual information of the channel.

Recall that the primal and dual SDPs of the zero-error
simulation cost are given by [8]

Primal: SNS,0(N ) = 1

2
log inf

{
Tr VB

∣∣ JN ≤ 1A ⊗ VB
}
,

Dual: SNS,0(N ) = 1

2
log sup

{
Tr JN X AB

∣∣
TrA X AB ≤ 1B, X AB ≥ 0

}
.

We study some fundamental channels and show their analyt-
ical solutions by explicitly constructing feasible solutions in
both primal and dual problems, respectively. Using the weak
duality, we can argue that the feasible solutions we construct
are optimal.
Example 2. The quantum depolarizing channel is Dp(ρ) =
(1 − p)ρ + p · 1

d with dimension d . Taking

VB = (d(1 − p)+ p

d
)1B, and X AB =

d−1∑
i, j=0

|i i�� j j |, (61)

in the primal and dual problems respectively, we can verify
that they are feasible solutions. Thus, we have

1

2
log(d2(1 − p)+ p) = 1

2
log Tr JDp X AB (62)

≤ SNS,0(Dp) (63)

≤ 1

2
log Tr VB (64)

= 1

2
log(d2(1 − p)+ p). (65)

We find that

SNS,0(Dp) = 1

2
log(d2(1 − p)+ p). (66)

Example 3. The amplitude damping channel is Nr (ρ) =∑1
i=0 EiρE†

i with E0 = |0��0|+√
1 − r |1��1|, E1 = √

r |0��1|
and 0 ≤ r ≤ 1. The optimal solutions are given by

VB = (1 + √
1 − r)|0��0| + (

√
1 − r + 1 − r)|1��1| (67)

and X AB = (|00� + |11�)(�00| + �11|). (68)

We find that

SNS,0(Nr ) = 1

2
log(2(1 + √

1 − r)− r). (69)

Example 4. The dephasing channel is Zp(ρ) = (1 − p)ρ +
pZρZ with Z = |0��0| − |1��1|. The optimal solutions are
given by

VB = (|2 p − 1| + 1)1B and (70)

X AB = (|00� + |11�)(�00| + �11|). (71)

I εmax(A : B)N⊗n = inf
1
2 �Ñ n−N⊗n�♦≤ε
Ñ n∈ CPTP(A�n :Bn)

inf
σ n

B∈S=(B⊗n)
Dmax(Ñ n

A�→B(φ
⊗n
AA� )�φ⊗n

A ⊗ σ n
B) (60a)

≥ inf
1
2 �Ñ n−N⊗n�♦≤ε
Ñ n∈ CPTP(A�n :Bn)

inf
σ n

B∈S=(B⊗n)
D(Ñ n

A�→B(φ
⊗n
AA� )�φ⊗n

A ⊗ σ n
B) (60b)

= inf
1
2 �Ñ n−N⊗n�♦≤ε
Ñ n∈ CPTP(A�n :Bn)

I (A : B)Ñ n
A�→B

(φ⊗n
AA� ) (60c)

≥ I (A : B)N⊗n
A�→B

(φ⊗n
AA� ) − (2nε log |A| + (1 + ε)h2(ε/(1 + ε))) (60d)

= nI (A : B)NA�→B (φAA� ) − (2nε log |A| + (1 + ε)h2(ε/(1 + ε))) (60e)

= nI (A : B)N − (2nε log |A| + (1 + ε)h2(ε/(1 + ε))) (60f)
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Fig. 3. The zero-error NS-assisted channel simulation cost of the qubit
depolarizing channel/qubit erasure channel, qubit amplitude damping channel
and qubit dephasing channel as a function of each channel’s noise parameter.

We find that

SNS,0(Zp) = 1

2
log(|4 p − 2| + 2). (72)

Example 5. The quantum erasure channel is Ep(ρ) = (1 −
p)ρ + p|e��e| with |e� orthogonal to the input Hilbert space.
The optimal solutions are given by

VB = d(1 − p)
d−1∑

i, j=0

|i��i | + p|d��d| and (73)

X AB =
d−1∑

i, j=0

|i i�� j j | + 1

d

d−1∑
i=0

|i��i | ⊗ |d��d|. (74)

We find that

SNS,0(Ep) = 1

2
log(d2(1 − p)+ p). (75)

Finally, we plot the zero-error NS-assisted channel simula-
tion cost of these four channels as a function of their noise
parameters in the following Figure 3. The figure is plotted for
the qubit case, i.e, d = 2. Note that the quantum depolarizing
channel and the quantum erasure channel have exactly the
same rate given by Eqs. (66) and (75).

VI. DISCUSSION

Since the entanglement-assisted capacity allows a single-
letter characterization, it is natural to consider a second-order
refinement thereof. A second-order expansion of an achievable
rate was established in [45] but no matching second-order
converse bound is known. Our one-shot NS-assisted quantum
simulation cost and the channel’s smooth max-information
may provide some insights in this direction.

Suppose a quantum channel N can be used to simulate a
noiseless channel idm1 with dimension m1 and on the other
hand it requires a noiseless channel idm2 with dimension m2
to simulate itself, then we necessarily have m2 ≥ m1 by
the definition of simulation. This means that the simulation
cost of a channel operationally provides a converse bound for

its channel capacity. However this approach does not provide
a tighter bound than the NS-assisted capacity in the one-shot
and asymptotic setting (see, e.g., [19], [27], [31]).

From Eq. (40), the AEP of the channel’s smooth max-
information can be equivalently written as

lim
ε→0

lim
n→∞

1

n
inf

Mn∈Gn

Dε
max(N⊗n�Mn) = inf

M∈G
D(N�M),

where Gn represents the set of constant channels from A�n
to Bn and the channel divergence is defined as [38], [46]
D(N�M) := maxρA D(NA�→B(φAA� )�MA�→B(φAA� )), with
φAA� a purification of ρA . An interesting question is to
consider the channel’s AEP beyond the set of constant chan-
nels Gn , such as the singleton {M⊗n} [47]. Can we obtain
a channel’s generalization of quantum Stein’s lemma [48]?
A partial progress to this problem regarding classical-quantum
channels has been recently given in [49].

APPENDIX A
LINEAR PROGRAMS

For any classical channel N (y|x), the SDP (18) will nat-
urally reduce to a linear program. Specifically, its one-shot
simulation cost is given by a linear program,

S(1)NS,ε(N ) = log inf
⌈√∑

Vy

⌉
s.t. (76a)

Yxy ≥ Ñ (y|x)− N (y|x),Yxy ≥ 0,∀x, y, (76b)

Ñ (y|x) ≥ 0,∀x, y,
∑

y
Ñ (y|x) = 1,∀x, (76c)

Ñ (y|x) ≤ Vy,∀x, y,
∑

y
Yxy ≤ ε,∀x . (76d)

For the quantum depolarizing channel Dp(ρ) = (1− p)ρ+
p · 1d , its Choi-Jamiołkowski matrix is given by JDp = q1
d +
q2


⊥
d where q1 = d(1 − p) + p

d , q2 = p
d and 
d is the

maximally entangled state with dimension d , 
⊥
d = 1 −
d .

Then we have

J⊗n
Dp

=
n∑

k=0

pk Pn
k (
d ,


⊥
d ) with pk = qk

1 qn−k
2 , (77)

and Pn
k (
d ,


⊥
d ) denotes the summation of n-fold tensor

products of 
d and 
⊥
d with exactly k factors of 
d . For

example, P3
1 (
d ,


⊥
d ) = 
⊥

d ⊗
⊥
d ⊗
d +
⊥

d ⊗
d ⊗
⊥
d +


d ⊗
⊥
d ⊗
⊥

d . Due to the symmetries of J⊗n
Dp

, we can take
the optimal solution in SDP (18) in form of

JÑ n =
n∑

k=0

rk Pn
k (
d ,


⊥
d ), Y =

n∑
k=0

yk Pn
k (
d ,


⊥
d ), (78)

and V = s1⊗n
d . (79)

Then we have the LP as follows,

S(1)NS,ε(D⊗n
p ) = log inf

⌈√
dn · s

⌉
s.t. (80a)

yk − rk + pk ≥ 0, yk ≥ 0, 0 ≤ rk ≤ s,∀k (80b)
n∑

k=0

(
n

k

)
(

1

d
)k(d − 1

d
)n−krk = 1, (80c)

n∑
k=0

(
n

k

)
(

1

d
)k(d − 1

d
)n−k yk ≤ ε. (80d)
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APPENDIX B
TECHNICAL LEMMAS

Lemma 9 For any quantum state ρAB and ε ∈ (0, 1), it holds

Î εmax(A : B)ρ ≤ I ε/6max(A : B)ρ + g(ε), (81)

with g(ε) = log(1 + 72/ε2).

Proof: Recall the definitions of the smooth max-information
for quantum states:

Î εmax(A : B)ρ = inf
ρ̃≈ερ
ρ̃A=ρA

inf
σB

Dmax(ρ̃AB�ρA ⊗ σB), (82)

I εmax(A : B)ρ = inf
ρ̃≈ερ inf

σB
Dmax(ρ̃AB�ρ̃A ⊗ σB). (83)

In [42] the authors also discuss the variation

Ĩ εmax(A : B)ρ = inf
ρ̃≈ερ inf

σB
Dmax(ρ̃AB�ρA ⊗ σB), (84)

where the marginal state in the second term is fixed to be
ρA. It was shown in [42] that for any quantum state ρAB and
ε ∈ (0, 1) we have

Î εmax(A : B)ρ ≤ Ĩ ε/3max(A : B)ρ + log(1 + 72/ε2). (85)

To show the result as Eq. (81), we only need to prove

Ĩ εmax(A : B)ρ ≤ I ε/2max(A : B)ρ. (86)

Denote I ε/2max(A : B)ρ = λ and suppose the optimal solution is
taken at ρAB and σB . Let

ρ̃AB = ρ
1
2
A VAρ

− 1
2

A ρABρ
− 1

2
A V †

Aρ
1
2
A , (87)

where VA is the unitary such that F(ρA, ρ A) = Tr ρ
1
2
Aρ

1
2
AVA.

By direct calculation, we have

ρ̃AB = ρ
1
2
A VAρ

− 1
2

A ρABρ
− 1

2
A V †

Aρ
1
2
A (88)

≤ 2λ · ρ
1
2
A VA PρA V †

Aρ
1
2
A ⊗ σB (89)

≤ 2λρA ⊗ σB , (90)

where PρA is the projector on the support of ρA . Then Eq. (86)
follows as soon as we show ρ̃AB ≈ε ρAB . This is actually
shown in the final steps of the proof for Theorem 2 in [42].
We repeat these steps here for completeness. Deonte the

purification of ρ̄AB as |ρ̄ABC � = ρ̄
1
2
A |
�A:BC where |
�A:BC

denotes the non-normalized maximally entangled pure state

in the cut A : BC . Then |ρ̃ABC � = ρ
1
2
A VAρ

− 1
2

A |ρ̄ABC � is a
purification of ρ̃AB . We have

F2(ρ̃AB , ρ̄AB ) ≥ F2(ρ̃ABC , ρ̄ABC ) (91)
= |�ρ̄ABC |ρ̃ABC �|2 (92)

= ∣∣�
A:BC
∣∣ρ̄ 1

2
Aρ

1
2
A VAρ

− 1
2

A ρ̄
1
2
A |
�A:BC �∣∣2 (93)

= ∣∣ Tr ρ̄
1
2
Aρ

1
2
A VA

∣∣2 = F2(ρA, ρ̄A), (94)

which implies P(ρ̃AB , ρ AB) ≤ P(ρA, ρ A). Thus it holds

P(ρ̃AB , ρAB ) ≤ P(ρ̃AB , ρ AB)+ P(ρ AB , ρAB ) (95)
≤ P(ρA, ρA)+ P(ρ AB , ρAB ) (96)
≤ 2P(ρ AB , ρAB ) (97)
≤ ε, (98)

which completes the proof.

Lemma 10 For any pure state φAA� and quantum state ρAB

such that φA = ρA, the following two sets are the same,{NA�→B(φAA� ) ≈ε ρAB | N ∈ CPTP(A� : B)
}

= {
σAB ≈ε ρAB | σA = ρA

}
. (99)

Proof: Denote the L.H.S and R.H.S as S1 and S2 respec-
tively. It is clear that S1 ⊆ S2 and we now show the other
direction. For any quantum state σAB ∈ S2, denote σ AB =
σ

−1/2
A σABσ

−1/2
A . Then, we have σ AB ≥ 0 and σ A = 1A.

From the Choi-Jamiołkowski isomorphism, we know that there
exists a CPTP map NA�→B such that σ AB = NA�→B(
AA� ),
where 
AA� denotes the un-normalized maximally entangled
state. Thus, we get σAB = NA�→B(σ

1/2
A 
AA�σ 1/2

A ). Denoting
ψAA� = σ

1/2
A 
AA�σ 1/2

A , we have that ψAA� is a purification
of σA and since σA = ρA = φA we get that φAA� is also a
purification of σA . Due to Uhlmann’s theorem [50], there exists
a unitary U on the system A� such that ψAA� = U(φAA� ) with
U(·) = U · U†. Hence, we find σAB = N ◦ U(φAA� ) ∈ S1.
This completes the proof.

Lemma 11 For any quantum channel NA�→B and ε ∈ (0, 1),
denote ki := infσ n

R AB ∈Ki Imax(R A : B)σ n
R AB

as the optimal
values, where i = 1, 2 and the feasible sets

K1 :=
{
σ n

R AB

∣∣∣ σ n
R AB ≈ε N⊗n

A�→B(ω
n
R AA� ), σ n

R A = ωn
R A

}
,

K2 :=
{
σ n

R AB

∣∣∣ σ n
R AB = Ñ n

A�→B(ω
n
R AA� ) ≈ε

N⊗n
A�→B(ω

n
R AA� ), Ñ n ∈ Perm(A�n : Bn)

}
.

where ωn
R AA� is the purification of the de Finetti state ωn

AA� =∫
σ⊗n

AA� d(σAA� ) with pure states σAA� = |σ ��σ |AA� and d(·) the
measure on the normalized pure states induced by the Haar
measure. Then k1 = k2.

Proof: It is clear that K2 ⊆ K1 thus k1 ≤ k2. We need to
show the opposite direction. In the following, let us consider
Rn An as the reference system. For any optimal quantum state
σ n

R AB ∈ K1, according to Lemma 10, there exists a quantum
channel Ñ n

A�→B such that

σ n
R AB = Ñ n

A�→B(ω
n
R AA� ) ≈ε N⊗n

A�→B(ω
n
R AA� ). (100)

Then for any permutation operation πn , we have πn
A� (ωn

A� ) =
ωn

A� . Then both πn
A� (ωn

R AA� ) and ωn
R AA� are purifications of

ωn
A� . By Uhlmann’s theorem [50], there exists a unitary Un

π,R A
acting on the reference system Rn An such that πn

A�(ωn
R AA� ) =

Un
π,R A(ω

n
R AA� ) with Un

π,R A(·) = Un
π,R A(·)(Un

π,R A)
†. Then we

have

πn
B ◦ Ñ n

A�→B ◦ πn
A�(ωn

R AA� )

= πn
B ◦ Ñ n

A�→B ◦ Un
π,R A(ω

n
R AA� ) (101)

= Un
π,R A ◦ πn

B ◦ Ñ n
A�→B(ω

n
R AA� ), (102)

and

πn
B ◦ N⊗n

A�→B ◦ πn
A� (ωn

R AA� )

= πn
B ◦ N⊗n

A�→B ◦ Un
π,R A(ω

n
R AA� ) (103)

= Un
π,R A ◦ πn

B ◦ N⊗n
A�→B(ω

n
R AA� ). (104)
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Since the purified distance is invariant under unitary operations
and Ñ n

A�→B(ω
n
R AA� ) ≈ε N⊗n

A�→B(ω
n
R AA� ), we have

πn
B ◦ Ñ n

A�→B ◦ πn
A� (ωn

R AA� )

≈ε πn
B ◦ N⊗n

A�→B ◦ πn
A�(ωn

R AA� ) (105)

= N⊗n
A�→B(ω

n
R AA� ), (106)

where the equality follows from the permutation invariance of
N⊗n

A�→B . Due to the convexity of the purified distance, we have

σ̃ n
R AB := 1

n!
∑
πn

πn
B ◦ Ñ n

A�→B ◦ πn
A�(ωn

R AA� ) (107)

≈ε N⊗n
A�→B(ω

n
R AA� ). (108)

Note that 1
n!

∑
πn
πn

B ◦ Ñ n
A�→B ◦ πn

A� is permutation invariant,
which implies σ̃ n

R AB ∈ K2. Then we have

k2 ≤ Imax(R A : B)σ̃ n
R AB

(109)

= Imax(R A : B)
(Ñ n
A�→B

) (110)

≤ Imax(R A : B)Ñ n
A�→B

(111)

= Imax(R A : B)σ n
R AB

(112)

= k1, (113)

where the first and second equalities follows from the fact
that channel’s max-information is independent on the input
state (see Remark 2), the second inequality follows by the
monotonicity of the channel’s max-information (see Remark 5)
under the superchannel 
(·) = 1

n!
∑
πn
πn

B(·)πn
A� , the last

equality follows from the optimality assumption of σ n
R AB . This

completes the proof.

Lemma 12 For any quantum states ρAB and σAB such that
ρA = σA and 1

2�ρ − σ�1 ≤ ε, it holds that

|I (A : B)ρ − I (A : B)σ | ≤ 2ε log |A| + (1 + ε)h2

(
ε

1 + ε

)
,

where h2(·) is the binary entropy.

Proof: Since I (A : B)ρ = H (A)ρ − H (A|B)ρ, we have

|I (A : B)ρ − I (A : B)σ |
= |H (A|B)ρ − H (A|B)σ | (114)

≤ 2ε log |A| + (1 + ε)h2

(
ε

1 + ε

)
, (115)

where H (A) and H (A|B) are von Neumann entropy and con-
ditional entropy respectively. The second inequality follows
from [51, Lemma 2.].

Lemma 13 Suppose the effective channel M̃Ai →Bo =
�Ai Bi→Ao Bo ◦NAo→Bi with quantum channel N and bipartite
no-signalling quantum supermap �, then we have the relation
in terms of the their Choi-Jamiołkowski matrices JM̃Ai Bo

=
TrAo Bi [(JN

Ao Bi
)T ⊗ 1Ai Bo]J�Ai Bi Ao Bo

.

Proof: This result is widely used when consider-
ing no-signalling codes, e.g., [8], [31]. We include its
proof here only for completeness. Since �Ai Bi→Ao Bo is
required to be B to A no-signalling, we can write it as

�Ai Bi→Ao Bo = DEo Bi→BoFEi→EoEAi →Ao Ei with quantum
operations E,F ,D. Note that the inverse Choi-Jamiołkowski
isomorphism is given by NA→B (X A) = TrA JN

AB (X
T
A ⊗ 1B).

In the following we will not explicitly write out the identity
1B for simplicity. For any operator X Ai Bi , we have

�Ai Bi→Ao Bo(X Ai Bi )

=DEo Bi→BoFEi→EoEAi →Ao Ei (X Ai Bi )

=DEo Bi→BoFEi→Eo TrAi JE
Ai Ao Ei

X
TAi
Ai Bi

=DEo Bi→Bo TrEi JF
Ei Eo

[
TrAi (J

E
Ai Ao Ei

)TEi X
TAi
Ai Bi

]
= TrEo Bi JD

Eo Bi Bo

[
TrEi (J

F
Ei Eo

)TEo
[

TrAi (J
E
Ai Ao Ei

)TEi X
TAi Bi
Ai Bi

]]
= TrAi Bi

[
TrEi Eo JD

Eo Bi Bo
(JF

Ei Eo
)TEo (JE

Ai Ao Ei
)TEi

]
X

TAi Bi
Ai Bi

.

Thus we have

J�Ai Bi Ao Bo
= TrEi Eo JD

Eo Bi Bo
(JF

Ei Eo
)TEo (JE

Ai Ao Ei
)TEi . (116)

Repeating the above steps again for M̃Ai →Bo(X Ai ) =
DEo Bi→BoFEi →EoEAi →Ao EiNAo→Bi (X Ai ), we have

J M̃
Ai Bo

=TrAo Bi Ei Eo JD
Eo Bi Bo

(JF
Ei Eo

)TEo (JE
Ai Ao Ei

)TAo Ei (JN
Ao Bi

)TBi

By Eq. (116), we have

J M̃
Ai Bo

= TrAo Bi (J
�
Ai Bi Ao Bo

)TAo (JN
Ao Bi

)TBi (117)

= TrAo Bi (J
N
Ao Bi

)TAo Bi J�Ai Bi Ao Bo
, (118)

which completes the proof.
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