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The chain rule for the classical relative entropy ensures that the relative entropy between probability
distributions on multipartite systems can be decomposed into a sum of relative entropies of suitably chosen
conditional distributions on the individual systems. Here, we prove a chain rule inequality for the quantum
relative entropy. The new chain rule allows us to solve an open problem in the context of asymptotic
quantum channel discrimination: surprisingly, adaptive protocols cannot improve the error rate for
asymmetric channel discrimination compared to nonadaptive strategies.

DOI: 10.1103/PhysRevLett.124.100501

Introduction.—The von Neumann entropy HðAÞ of a
quantum system A is a fundamental measure of uncertainty.
For example, it characterizes the optimal rates for basic
information-theoretic tasks such as compression or entan-
glement manipulation [1] and it can be used to quantify
entanglement and topological order in condensed matter
systems [2–4]. The conditional von Neumann entropy
HðA1jA2Þ is defined via the relation

HðA1A2Þ ¼ HðA1Þ þHðA2jA1Þ: ð1Þ

Iterative use of this defining relation yields expressions
such as

HðAnjBÞ ¼
Xn
i¼1

HðAijAi−1BÞ; ð2Þ

as visualized in Fig. 1. This relation, called chain rule,
allows us to view the entropy of a large composite system
as a sum of entropies of its subsystems. The chain rule
property is also crucial in the definition of entanglement
measures such as the squashed entanglement [5].
In this Letter we propose a chain rule for the relative

entropy defined as

DðρkσÞ ≔
�
trρðlog ρ − log σÞ if suppðρÞ ⊆ suppðσÞ
þ∞ otherwise;

for any states ρ and σ (where the latter does not need to be
normalized). The relative entropy is a more general entropic
quantity than the von Neumann entropy. It contains the
latter and other information measures, such as the mutual

information, as a special case. It can be seen as a
dissimilarity measure between quantum states and is used
to define various important quantities such as the relative
entropy of entanglement [6]. The relative entropy charac-
terizes the error exponent for asymmetric hypothesis
testing [7] or quantifies the amount of resource in a
resource theory [8,9].
So far no chain rule for the quantum relative entropy has

been proven. This is in sharp contrast with the classical case
where a chain rule is known [[10] Theorem 2. 5. 3] for the
relative entropy (also called the Kullback-Leibler diver-
gence). For a pair of discrete random variables (X, Y) with
alphabet X × Y, we have

DðPXYkQXYÞ
¼ DðPXkQXÞ þ

X
x∈X

PXðxÞDðPYjX¼xkQYjX¼xÞ;

where PXY and QXY are joint probability distributions, but
QXY does not need to be normalized. No quantum analog of

FIG. 1. A graphical visualization of the chain rule for the von
Neumann entropy given in (2). The entropy is taken with respect
to the blue systems conditioned on the gray systems.
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such a chain rule is known, even if we relax the equality
with the following inequalities

DðPXkQXÞ þmin
x∈X

DðPYjX¼xkQYjX¼xÞ
≤ DðPXYkQXYÞ
≤ DðPXkQXÞ þmax

x∈X
DðPYjX¼xkQYjX¼xÞ: ð3Þ

In this Letter, we prove a quantum version of the upper
bound (3) (see Theorem 2). We also show that it is tight in
the sense that there exist nontrivial scenarios where the
chain rule is an equality (see Corollary 3).
To model the quantum setting, the conditional distribu-

tions are replaced by trace-preserving completely positive
maps E and F from A to B and the initial states are density
operators ρRA and σRA, where R denotes a reference system.
To express the very last term in (3) in the quantum
mechanical case we use a quantity called nonstabilized
channel relative entropy, which is defined by

D̄ðEkF Þ ≔ max
ϕA∈SðAÞ

D½EðϕAÞkF ðϕAÞ�;

where SðAÞ denotes the set of density operators on A.
Its stabilized counterpart [11] is defined by DðEkF Þ ≔
D̄ðIA ⊗ EkIA ⊗ F Þ, where IA denotes the identity map
on A. In the following we will omit identity maps if they are
clear from the context. Motivated by the classical case (3),
it is natural to ask whether the following chain rule

D½EðρRAÞkF ðσRAÞ�≤
?
DðρRAkσRAÞ þDðEkF Þ ð4Þ

is correct [12].
Limitations on a chain rule.—It turns out that (4) does

not hold in general because the channel relative entropy is
not additive under the tensor product as shown next.
Proposition 1. There exist trace-preserving completely

positive maps E, F such that

DðE ⊗ EkF ⊗ F Þ > 2DðEkF Þ: ð5Þ

This implies that there exist density operators ρRA, σRA for
some finite-dimensional system R such that

D½EðρRAÞkF ðσRAÞ� > DðρRAkσRAÞ þDðEkF Þ: ð6Þ

Before proving the assertion we introduce another quantity
called amortized channel relative entropy [13] defined by

DAðEkF Þ ≔ sup
ϕRA;ωRA∈SðR⊗AÞ

fD½EðϕRAÞkF ðωRAÞ�

−DðϕRAkωRAÞg; ð7Þ

where R is a reference system whose dimension is not
constrained [14].

Proof of proposition 1]—We start by proving that (5)
implies (6). It is known [[15] Theorem 3 and 6] that

DðEkF Þ ≤ DregðEkF Þ ≤ DAðEkF Þ;

where DregðEkF Þ ≔ limn→∞ð1=nÞDðE⊗nkF⊗nÞ. The
statement (5) implies that the first inequality can be strict.
By definition of the amortized channel relative entropy (7)
this directly implies (6).
It thus remains to prove (5). To do so we construct

an example of two trace-preserving completely positive
maps E and F on qubits that satisfy (5). Consider
the generalized amplitude damping channel Aγ;βðρÞ ¼P

4
i¼1 AiρA

†
i for γ; β ∈ ½0; 1� with the Kraus operators A1 ¼ffiffiffiffiffiffiffiffiffiffiffi

1 − β
p ðj0ih0j þ ffiffiffiffiffiffiffiffiffiffi

1 − γ
p j1ih1jÞ, A2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γð1 − βÞp j0ih1j,

A3 ¼
ffiffiffi
β

p ð ffiffiffiffiffiffiffiffiffiffi
1 − γ

p j0ih0j þ j1ih1jÞ, and A4 ¼
ffiffiffiffiffi
γβ

p j1ih0j.
For the two channels E ¼ A0.3;0 and F ¼ A0.5;0.9 their
corresponding Choi matrices are given with respect to the
computational basis by

JERB ¼

0
BBBBB@

1 0 0
ffiffiffiffiffiffiffi
0.7

p

0 0 0 0

0 0 0.3 0ffiffiffiffiffiffiffi
0.7

p
0 0 0.7

1
CCCCCA

JFRB ¼

0
BBBBB@

0.55 0 0
ffiffiffiffiffiffiffi
0.5

p

0 0.45 0 0

0 0 0.05 0ffiffiffiffiffiffiffi
0.5

p
0 0 0.95

1
CCCCCA
:

Due to the joint-convexity of the relative entropy, the
maximization of the channel relative entropy can be taken
over all pure states. For an arbitrary density matrix ρ ∈
SðAÞ let jϕiRA ¼ ð

ffiffiffiffiffi
ρ⊺R

p
⊗ idAÞjΩiRA be its purification

where jΩiRA ¼ P
i jiiRjiiA and where R is isomorphic to A

and thus

EðϕRAÞ¼ ðI ⊗ EÞ
�� ffiffiffiffiffi

ρ⊺R

q
⊗ idA

�
jΩihΩjRA

� ffiffiffiffiffi
ρ⊺R

q
⊗ idA

��

¼
ffiffiffiffiffi
ρ⊺R

q
JERB

ffiffiffiffiffi
ρ⊺R

q
:

Hence we find

DðEkF Þ ¼ max
ρR∈SðRÞ

D
� ffiffiffiffiffi

ρ⊺R

q
JERB

ffiffiffiffiffi
ρ⊺R

q ���
ffiffiffiffiffi
ρ⊺R

q
JFRB

ffiffiffiffiffi
ρ⊺R

q �
;

¼ max
ρR¼diagðp;1−pÞ

Dð ffiffiffiffiffi
ρR

p
JERB

ffiffiffiffiffi
ρR

p k ffiffiffiffiffi
ρR

p
JFRB

ffiffiffiffiffi
ρR

p Þ:

The final step follows since both E andF are covariant with
respect to the Pauli-Z operator. Thus it suffices to perform
the maximization over input states with respect to the
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one-parameter family of states ρR¼pj0ih0jþð1−pÞj1ih1j
(see, e.g., [[16] Proposition II. 4.]). Using the FMINBND

function in MATLAB, we find DðEkF Þ ¼ 0.9176 for an
optimizer ρR ¼ diagð0.8355; 1 − 0.8355Þ. This can also be
seen by plotting the value of the relative entropy over the
interval p ∈ ½0; 1� as shown in Fig. 2.
On the other hand, if we choose the input state ρR1R2

¼
diagð0.8; 0; 0; 0.2Þ we have

DðE ⊗ EkF ⊗ F Þ
≥ Dð ffiffiffiffiffiffiffiffiffiffi

ρR1R2

p ðJERBÞ⊗2 ffiffiffiffiffiffiffiffiffiffi
ρR1R2

p k ffiffiffiffiffiffiffiffiffiffi
ρR1R2

p ðJFRBÞ⊗2 ffiffiffiffiffiffiffiffiffiffi
ρR1R2

p Þ
¼ 1.9362 > 2 × 0.92 > 2DðEkF Þ;

showing that the stabilized channel relative entropy is not
additive under the tensor product. ▪
More generally, as shown in Fig. 3, we can plot

the difference DðA⊗2
γ1;0

kA⊗2
γ2;0.9

Þ − 2DðAγ1;0kAγ2;0.9Þ for a
wide range of γ1, γ2. Exploiting the symmetry that Aγ;β is

covariant with respect to the Pauli-Z operator and the tensor
product channel A⊗2

γ;β is also covariant under permutation,

we can restrict the computation of DðA⊗2
γ1;0

kA⊗2
γ2;0.9

Þ to a
two-parameter state ρR1R2

¼diagðp1;p2;p2;1−p1−2p2Þ
(see, e.g., [[16] Proposition II. 4.]) and we utilize the
function QUANTUM_REL_ENTR from CVXQUAD [17]. We
observe that the relative entropy is not additive for a wide
range of parameters.
Proposition 1 justifies the definition of a (nonstabilized)

regularized channel relative entropy as D̄regðEkF Þ ≔
limn→∞ð1=nÞD̄ðE⊗nkF⊗nÞ and similarly for the stabilized
quantity. This contrasts with the relative entropy for states
that is additive under the tensor product.
Chain rule.—The main result of this Letter ensures

that (4) becomes valid if we replace the channel
relative entropy term with its regularized version. More
precisely, the inequality is correct whenever DmaxðEkF Þ ≔
maxϕRA∈SðR⊗AÞDmax½EðϕRAÞkF ðϕRAÞ� is finite, where
DmaxðρkσÞ ≔ inffλ ∈ R∶ρ ≤ 2λσg is the max-relative
entropy [18,19] and R is isomorphic to A.
Theorem 2 (Chain rule for relative entropy). Let ρA,

σA be density operators and E, F be trace-preserving
completely positive maps such thatDmaxðEkF Þ < ∞. Then

D½EðρAÞkF ðσAÞ� ≤ DðρAkσAÞ þ D̄regðEkF Þ: ð8Þ

In addition, in case A ¼ A1 ⊗ A2 and F is such that its
output does not depend on the input on A1, this inequality
can be strengthened to

D½EðρA1A2
ÞkF ðσA1A2

Þ� ≤ DðρA2
kσA2

Þ þ D̄regðEkF Þ: ð9Þ

Normalization properties of the relative entropy ensure
that the chain rule remains valid if σ is not normalized and
F is not trace preserving.
Proof sketch.—The full proof can be found in the

Supplemental Material [20], which includes references [21–
25]. Instead we sketch the proof idea. We start with the
observation that the chain rule follows for the max-relative
entropy from the triangle inequality [[26] Lemma 2. 1]—a
property that does not hold for the relative entropy. To see
this suppose F ¼ R ∘ G for some channelsR and G. Then
the triangle inequality together with the data-processing
inequality for the max-relative entropy [27] give

Dmax½EðρÞkF ðσÞ�
≤ Dmax½EðρÞkF ðρÞ� þDmax½F ðρÞkF ðσÞ�;
¼ Dmax½EðρÞkF ðρÞ� þDmax½R ∘ GðρÞkR ∘ GðσÞ�;
≤ Dmax½GðρÞkGðσÞ� þDmax½EðρÞkF ðρÞ�: ð10Þ

In case A ¼ A1 ⊗ A2 and G is the partial trace over A1 this
has the form of (9). Based on that insight we prove a variant
of (10), where all three terms are replaced by smooth-max

FIG. 2. Plot of the value Dð ffiffiffiffiffi
ρR

p
JERB

ffiffiffiffiffi
ρR

p k ffiffiffiffiffi
ρR

p
JFRB

ffiffiffiffiffi
ρR

p Þ with
respect to the input state ρR ¼ diagðp; 1 − pÞ. The subfigure is an
enlargement of the large plot. It is evident thatDðEkF Þ cannot be
larger than 0.92.

FIG. 3. A heat map of the value DðA⊗2
γ1;0

kA⊗2
γ2;0.9

Þ−
2DðAγ1;0kAγ2;0.9Þ where γ1; γ2 ∈ ½0.1; 0.9�. This shows that the
nonadditivity behavior of the stabilized channel relative entropy
under tensor products occurs for many channels.
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relative entropies together with an additive error term that
depends on the smoothing parameter. Finally we use the
asymptotic equipartition property [27,28], which ensures
that for n-fold product states the smooth-max relative
entropy converges to the relative entropy as n → ∞, to
obtain (9) from which (8) follows as the special case where
A1 is trivial.
In case E ¼ F , inequality (8) simplifies to the data-

processing inequality, i.e., D½EðρÞkEðσÞ� ≤ DðρkσÞ. In this
sense (8) may be viewed as a generalized data-processing
inequality where not necessarily the same channel is
applied to both arguments, which then is compensated
with the regularized channel relative entropy term.
Note that, in the chain rule (1) the term HðA2jA1Þ still

depends on the state of A1. However, if one instead
considers the implication for any fixed ρA1A2

HðA1A2Þρ ≥ HðA1Þρ þ min
νA2 jA1¼ρA2 jA1

HðA2jA1Þν; ð11Þ

where the minimization is over all νwhose conditional state
is identical to the conditional state of ρ, i.e., ρA2jA1

≔
ρ−1=2A1

ρA1A2
ρ−1=2A1

, the second term becomes independent of
the marginal state of A1. This is particularly desirable for an
iterative version analogous to (2), as the terms in the sum
then only depend on the correlations between a subsystem
Ai and the rest, but not on the state of the rest. One can now
see that (11) indeed can be retrieved from our relative
entropy chain rule (9) by expressing the conditional von
Neumann entropy in terms of the relative entropy, i.e.,
HðA2jA1Þ ¼ −DðρA1A2

kρA1
⊗ idA2

Þ (see the Supplemental
Material [20] for details).
An important corollary to Theorem 2 is when the maps

are of the form I ⊗ E and I ⊗ F . The right-hand side then
simplifies to the more common (stabilized) relative entropy
between channels.
Corollary 3. Let E be a trace-preserving completely

positive map and F be a completely positive map. Then

DAðEkF Þ ¼ DregðEkF Þ: ð12Þ

Proof.—It is known [[15] Theorem 3 and 6] that
DregðEkF Þ ≤ DAðEkF Þ. Theorem 2 applied to channels
IR ⊗ E and IR ⊗ F shows that

D½EðρRAÞkF ðσRAÞ�−DðρRAkσRAÞ≤D̄regðIR⊗EkIR⊗F Þ:

To conclude, it suffices to observe that for any system R we
have D̄regðIR ⊗ EkIR ⊗ F Þ ≤ DregðEkF Þ. □
Corollary 3 shows that for any trace-preserving com-

pletely positive map E and any completely positive map F
there exist states ρRA and σRA such that the chain rule holds
with equality.
The regularization of relative entropy term in Theorem 2

is necessary in full generality, as shown by Proposition 1.

However, for channels with a specific structure their
stabilized channel relative entropy is additive under the
tensor product which implies that DregðEkF Þ ¼ DðEkF Þ.
Examples of such channels are (i) classical-quantum
channels [[13] Lemma 25], (ii) covariant channels with
respect to the unitary group [[16] Corollary II. 5], (iii) E
arbitrary and F a replacer channel (i.e., F ðXÞ ¼ ωtrX
for ω ∈ SðBÞ) [11,13], and (iv) environment-seizable
channels [15].
We can single letterize the chain rule from Theorem 2 by

replacing the regularized channel relative entropy term with
the Belavkin-Staszewski channel relative entropy defined
by D̂ðEkF Þ ≔ maxϕRA∈SðR⊗AÞtrEðϕÞ log½EðϕÞ1=2F ðϕÞ−1×
EðϕÞ1=2�, where R is isomorphic to A. We note that the
logarithmic trace inequality [29,30] (see also [[31]
Theorem 4. 6]) ensures that DðEkF Þ ≤ D̂ðEkF Þ.
Furthermore, the Belavkin-Staszewski channel relative
entropy is additive under tensor products [[32]
Lemma 6]. Another benefit from this relaxation is the fact
that D̂ðAkBÞ has an explicit form and is thus efficiently
computable [[32] Lemma 5].
Asymptotic quantum channel discrimination.—A funda-

mental task in quantum information theory is to distinguish
between two quantum channels E, F . For this problem, one
usually differentiates between two different classes of
strategies:
Nonadaptive strategies (also called parallel

strategies).—Here we are given “black-box” access to n
uses of a channel G, which is either E or F , that can be used
in parallel before performing a measurement. More pre-
cisely, for an arbitrary state ρAnR ∈ SðA1 ⊗;…;⊗ An ⊗ RÞ
with a reference system R we create the state σBnR ¼
G⊗nðρAnRÞ and perform a measurement on σBnR. Based on
the measurement outcome we try to guess if G ¼ E or
G ¼ F . The protocol is depicted in Fig. 4. It has been
shown recently [[15] Theorem 3] that in the asymmetric
regime where we fix the type-I error to be bounded by ε, the
asymptotic optimal rate of the type-II error exponent is
given by DregðEkF Þ, when ε goes to 0. A type-I error is the
rejection of a true null hypothesis while a type-II error is the
nonrejection of a false null hypothesis.
Adaptive strategies (also called sequential strategies).—

Here we are also given “black-box” access to n uses of a
channel G which is either E or F. However unlike in the

FIG. 4. General protocol for nonadaptive strategies for the task
of channel discrimination. The channel G is either E or F and the
task is to distinguish between these two cases.
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nonadaptive scenario, after each use of a channel we are
allowed to perform an adaptive trace-preserving completely
positive map N k before we perform a measurement at the

end. More precisely, for an arbitrary state ρð0ÞAR0
∈SðA⊗R0Þ

we create ρðkÞARk
¼ ðN k ∘ GÞðρðk−1ÞARk−1

Þ for k ¼ 1;…; n. Finally

we perform a measurement on ρðnÞARn
and based on the

outcome try to guess if G ¼ E or G ¼ F. The strategy is
depicted in Fig. 5. The asymptotically optimal rate of
the type-II error exponent for this strategy is given by
DAðEkF Þ [[15] Theorem 6].
Because a nonadaptive strategy can be viewed as a

particular instance of an adaptive strategy [33], it follows
that adaptive strategies are clearly as powerful as non-
adaptive ones, which in technical terms means

DregðEkF Þ ≤ DAðEkF Þ:

It has been an open question if adaptive strategies can be
more powerful for the task of asymptotic quantum channel
discrimination [13,15,34,35]. For some special classes
of channels, such as classical and classical-quantum chan-
nels it has been shown that adaptive protocols cannot
improve the error rate for asymmetric channel discrimina-
tion [13,34]. Corollary 3 now proves that this is the case for
all quantum channels because

DregðEkF Þ ¼ DAðEkF Þ:

We note that this is surprising for various reasons. In the
symmetric Chernoff setting [36–38] adaptive protocols
offer an advantage over nonadaptive ones. Furthermore,
in the nonasymptotic setting adaptive protocols also out-
perform nonadaptive strategies [36,37,39]. Apart from its
fundamental importance the channel discrimination prob-
lem features immediate applications in various areas
ranging from quantum metrology [40] to the study of
resource theories [41].
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