Mathematical Programming
https://doi.org/10.1007/s10107-020-01537-7

FULL LENGTH PAPER

Series A ")

Check for
updates

The sum-of-squares hierarchy on the sphere
and applications in quantum information theory

Kun Fang'® - Hamza Fawzi'

Received: 27 August 2019 / Accepted: 22 June 2020
© The Author(s) 2020

Abstract

We consider the problem of maximizing a homogeneous polynomial on the unit sphere
and its hierarchy of sum-of-squares relaxations. Exploiting the polynomial kernel
technique, we obtain a quadratic improvement of the known convergence rate by
Reznick and Doherty and Wehner. Specifically, we show that the rate of convergence
is no worse than O (d%/¢2) in the regime ¢ = Q(d) where ¢ is the level of the hierarchy
and d the dimension, solving a problem left open in the recent paper by de Klerk and
Laurent (arXiv:1904.08828 ). Importantly, our analysis also works for matrix-valued
polynomials on the sphere which has applications in quantum information for the
Best Separable State problem. By exploiting the duality relation between sums of
squares and the Doherty—Parrilo—Spedalieri hierarchy in quantum information theory,
we show that our result generalizes to nonquadratic polynomials the convergence rates
of Navascués, Owari and Plenio.

Mathematics Subject Classification 90C22 - 90C23 - 81P42

1 Introduction

We consider in this paper a fundamental computational task, that of maximizing a

multivariate polynomial p € R[x] in d variables x = (x1, ..., x4) on the unit sphere:
Pmax = max p(x) (1
xesd-1

where $9! = {x e RY : x12 +---+ xﬁ = 1}. Optimization problems of the above
form have applications in many areas. For example, computing the largest stable set of
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a graph is a special case of (1) for a suitable polynomial p of degree three, see [13,27].
Computing the 2 — 4 norm of a matrix A corresponds to the maximization of the
degree-four polynomial p(x) = ||Ax||j on the sphere, see e.g., [4] for more on this.
In quantum information, the so-called Best Separable State problem very naturally
relates to polynomial optimization on the sphere, as we explain later.

When p(x) is quadratic, problem (1) reduces to an eigenvalue problem which can
be solved efficiently. However for general polynomials of degree greater than two, the
problem is NP-hard as it contains as a special case the stable set problem [27]. The
sum-of-squares hierarchy is a hierarchy of semidefinite relaxations that approximate
the value pmax by a sequence of semidefinite programs of increasing size [25,31].
In this paper we study the approximation quality of this sequence of semidefinite
relaxations.

1.1 Sum-of-squares hierarchy

The sum-of-squares hierarchy for (1) that we study in this paper is defined by
p¢ = min Hy € Rs.t. y — p is sum-of-squares of degree £ on §¢~! } . 2)

The sequence (p¢)een consists of monotone upper bounds on ppax, i.e., for any £
we have pnax < p¢ and py < py_1. For each ¢, the value p, can be computed by a
semidefinite program of size d°©), see e.g., [25,31]. As explained in “Appendix A”,
(2) coincides with the usual sum-of-squares hierarchy defined in terms of Putinar and
Schmiidgen-type Positivstellensatz.

A result of Reznick [34] (see also [19]) shows that py — pmax as £ — oo. In fact
Reznick shows, assuming ppin = min, cge-1 p(x) = 0, that py/pmax converges to
1 at the rate d/¢, for £ large enough. In this paper we show that the sum-of-squares
hierarchy actually converges at the faster rate of (d/£)>. More precisely, we prove the
following

Theorem 1 Assume p(xy, ..., xq) is a homogeneous polynomial of degree 2n in d
variables with n < d, and let pmin denote the minimum of p on S¢=1. Then for any
L >C,d
| < P¢ — Pmin
Pmax — Pmin

<1+ (Cud/0)? 3)

for some constant C,, that depends only on n.

In a recent paper, de Klerk and Laurent [14] proved that a semidefinite hierarchy
of lower bounds on ppyax converges at a rate of 0(1/52) and left open the question
of whether the same is true for the hierarchy (p¢) of upper bounds. Our Theorem 1
answers this question positively.

1.2 Matrix-valued polynomials

The proof technique we use in this paper actually allows us to get a significant general-
ization of Theorem 1, related to matrix-valued polynomials. Let S be the space of real
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symmetric matrices of size k x k, and let S¥[x] be the space of S¥-valued polynomials
inx = (xq,...,xq7). We will often use the lighter notation F' € S[x] when the size k
is unimportant for the discussion. A polynomial F(xy, ..., xg) € S[x] is positive if
F(x) > 0 for all x € R? where the inequality is interpreted in the positive semidefi-
nite sense!. We say that F(x) € S¥[x] is a sum of squares if there exist polynomials
Uj(x) € ROK[x] such that F(x) = Y_; U;(x)U;(x)" for all x € R?. We say that
F(x) is £-sos on S?~1 if it agrees with a sum-of-squares polynomial on the sphere
with degU; < £. We are now ready to state our main theorem on sum of squares
representations for matrix-valued polynomials.

Theorem 2 Assume F(xy,...,xq) € S[x] is a homogeneous matrix-valued polyno-
mial of degree 2n in d variables with n < d, such that F(x) is symmetric for all
x. Assume furthermore that 0 < F(x) < I for all x € S4~!, where I is the identity
matrix. There are constants C, and C,, that depend only on n such that for any € > C,d,
F+C, (%)2 1 is €-sos on S471.

Some remarks concerning the statement are in order:

e Theorem 1 is a direct corollary of Theorem 2 where F (x) is the scalar polynomial
given by F(x) = (Pmax — P)/(Pmax — Pmin)-

o A remarkable fact of Theorem 2 is that the result is totally independent on the size
of the matrix F(x).

e Theorem 2 can be applied to get sum-of-squares certificates for scalar bihomoge-
neous polynomials on products of two spheres S¥~! x §9~! Indeed, one way to
think about a matrix-valued polynomial F(xy, ..., xg) € SK[x] is to consider the
real-valued polynomial p(x, y) = y"F(x)y where x € R? and y € R¥. This poly-
nomial is bihomogeneous of degree (27, 2) in the variables (x, y). One important
application of this setting is in quantum information theory for the best separable
state problem which we explain later in Sect. 1.3 and more details can be found in
Sect. 4.

e As stated, Theorem 2 is concerned only with levels £ > Q(d) of the sum-of-
squares hierarchy. The main technical result we prove in this paper (Theorem 6
below) actually allows us to get a bound on the performance of the sum-of-squares
hierarchy for all values of level £, and not just the regime ¢ > €2(d). The bounds
we get however do not have closed-form expressions in general, and they depend
on the eigenvalues of some generalized Toeplitz matrices. For small values of n
(namely 2n = 2 and 2n = 4) our bounds can be computed efficiently though, as
we explain later in Eqgs. (17) and (18).

e For more details about the regime £ = o(d) of the sum-of-squares hierarchy, we
refer the reader to the recent works [6,8] and references therein.

1.3 The Best Separable State problem in quantum information theory

The notion of entanglement plays a fundamental role in quantum mechanics. The set
of separable states (i.e., non-entangled states) on the Hilbert space C¢ ® C¢ is defined

! In the following discussion, the relation X > Y for any two matrices is always interpreted as the positive
semidefinite order, i.e., X — Y is a positive semidefinite matrix.
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as the convex hull of all pure product states
Sep(d) = conv {xx* Qyy :(x,y) e C!x C¥and |x|| = |ly| = 1} @

Here x™ = 7 is the conjugate transpose and Ix)? = xTx = Z;-i:l xi]?. Sep(d) is
a convex subset of the set Herm(d?) of Hermitian matrices of size d? x d%. A key
computational task in quantum information theory is the so-called Best Separable
State (BSS) problem: given M € Herm(d?), compute

hsep(M) = pggﬁd)Tr[Mp] = mgéd § Mij uxixeyjyi-  (5)
X,y L=
Iel=lyl=1 1<k

In words, hsep(M) is the support function of the convex set Sep(d) evaluated at M.
Note that hgep (M) is simply the maximum of the Hermitian polynomial®

M E Y, §) = Y MijuXiy, i (6)
1<i,j.k,l<d
over the product of spheres Sca X Sca = {(x,y) € C4{xC%: x| = |lyll = 1}. In

that sense the BSS problem is very related to the polynomial optimization problem
().

The Doherty—Parrilo—Spedalieri (DPS) hierarchy [18] is a hierarchy of semidefinite
relaxations to the set of separable states, which is defined in terms of so-called state
extensions (we recall the precise definitions later in the paper). It satisfies

Sep(d) € -+ S DPS¢(d) € --- S DPS,(d) € DPS;(d)

where DPS; (d) is the £’th level of the DPS hierarchy. It turns out that the DPS hierarchy
can be interpreted, from the dual point of view, as a sum of squares hierarchy. This
duality relation has been mentioned multiple times in the literature, however we could
not find any formal and complete proof of this equivalence. In this paper we give a
proof of this duality relation. To do this, we first need to specify the definition of sum of
squares for Hermitian polynomials. We say that a Hermitian polynomial is a real sum
of squares (rsos) if it can be written as a sum of squares of Hermitian polynomials.>
To state the result it is more convenient to work in the conic setting and we denote
the convex cones associated to Sep and DPS; by SEP and DPS; respectively (these
convex cones simply correspond to dropping a trace normalization condition).

2 A Hermitian polynomial is a polynomial of complex variables and their conjugates that takes only real
values. See Sect. 4.2 for more details.

3 Another common definition is to require that the polynomial is a sum of squares of modulus squares of
(holomorphic) complex polynomials. This is a different condition, and it corresponds from the dual point of
view to the DPS hierarchy without the Positive Partial Transpose conditions. See Sect. 4.2 for more details
on this.
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Theorem 3 (Duality DPS/sum-of-squares) Let SEP(d) be the convex cone of sepa-
rable states on C? @ C¢, and let DPSy(d) be the convex cone of quantum states
corresponding to the €’th level of the DPS hierarchy. Then we have:

(i) SEP(d)* = {M € Herm(d?) : pu is nonnegative}
(i) DPSi(d)* = {M € Herm(d?) : ||y||2“=V pys is a real sum-of-squares},

where K* denotes the dual cone to K and pyy is the Hermitian polynomial of Eq. (6).

Using this connection, our results on the convergence of the sum-of-squares hierar-
chy can be easily translated to bound the convergence rate of the DPS hierarchy. More
precisely, since the polynomial pj; of Eq. (6) is bihomogeneous of degree (2, 2) (i.e.,
it is quadratic in x and y independently) we can get a bound on the rate of convergence
of the DPS hierarchy from Theorem 2 where deg F' = 2. The rate of convergence we
get in this way actually coincides with the rate of convergence obtained by Navascues,
Owari and Plenio [28], who use a completely different (quantum-motivated) argument
based on the primal definition of the DPS hierarchy using state extensions. From the
sum-of-squares point of view, the theorem of Navascues et al. can thus be seen as a
special case of Theorem 2 when deg F' = 2. We conclude by stating the result on the
convergence rate of the DPS hierarchy.

Theorem 4 (Convergence rate of DPS hierarchy, see also [28]) Let M € Herm(dz)
and assume that (x ® y)TM(x ® y) = 0 forall (x, y) € C¢ x C4. Then

hsep(M) < hpps, (M) < (14 Cd* /%) hsep(M) @
for any £ > C'd, where C, C' > 0 are absolute constants.

Remark 1 (Multiplicative vs. additive approximations) The guarantee of Eq. (7) for
hsep(M) is multiplicative. In the quantum literature however, most results produce
guarantees on hgep (M) that are additive, assuming the spectral norm of M is at most
11[7,22], i.e., those take the form

hsep(M) < hpps,(M) < hsep(M) + €| M]| (8)

where || M || is the spectral norm and € depends on £ and d. We note that multiplicative
guarantees are stronger because hsep(M) < [|M]].

One important tool used to get additive guarantees like (8) are de Finetti results
[7,11]. One notable result on additive approximations of hsep(M) is that if M has
the 1-LOCC structure, i, M = Y i_; X; ® Y; where 0 < X;, Y%_, X; < I and
0 < Y; < I, then after at most £ = 0(10gd/62) we get hpps, (M) < hsep(M) + €
[5].

1.4 Overview of proof

We give a brief overview of the proof of Theorem 2. We will focus on the case where
F(x) is a scalar-valued polynomial for simplicity of exposition.
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Given a univariate polynomial g(¢) of degree ¢ consider the kernel K(x,y) =
q((x, y)?for (x, y) € §971 x §9=1 Define the integral transform, for 4 : §9~! — R

(Kh)(x) = / K h()do() Ve st ©)

yeSd*

where do is the rotation-invariant probability measure on S¢~!. As such, we think of
K as a linear map acting on functions on S¢~!. A crucial property of K is thatif 4 > 0
then the function K& is £-sos* on 91, by construction of K (x, y).

Let F(x) be a scalar-valued polynomial such that 0 < F(x) < 1 on S?~!. Our
goal is to find § > 0 such that F=F+686=F+ 8||x||%" is £-sos on S9! It can
be shown (details later) that the linear map K defined by (9) is invertible on the space
of homogeneous polynomials on $~!. As such we can always write F = Kh with
h = K~ 'F on S4 1. If K is close to the identity (i.e., the kernel K (x, y) is close
to a Dirac kernel §(x, y)) then we expect that h ~ F,ie., that || — F| s is small.
Since F > §, if we can guarantee that |h — F|loo < 8 it would follow that & > 0,
in which case the equation F = Kh = K(K~'F) gives a degree-¢ sum-of-squares
representation of F on the sphere.

To make the argument above precise we need to measure how close the kernel K is
to the identity. This is best done in the Fourier domain, where we analyze how close
the Fourier coefficients of the the kernel K (x, y) are to 1. The Fourier coefficients of
K (x, y) depend in a quadratic way on the coefficients in the expansion of ¢ (#) in the
basis of Gegenbauer polynomials. We show that there is a choice of g (¢) such that the
Fourier coefficients of K (x, y) converge to 1 at the rate ‘;—;, as £ — oo. The kernel
we construct is the solution of an eigenvalue maximization for a generalized Toeplitz
matrix, associated to the family of Gegenbauer polynomials. We use known results on
the roots of such polynomials to obtain the desired rate of convergence.

The idea of proof here is similar to the approaches in Reznick [34], and Doherty
and Wehner [19], and Parrilo [32]. The work of Reznick and Doherty and Wehner
use the kernel K (x, y) = (x, y)2¢/c for some normalizing constant ¢ for which the
Fourier coefficients can be computed explicitly.’ The Fourier coefficients of this kernel
happen to converge to 1 at a rate of %, which is slower than the kernels we construct.

Organization

In Sect. 2 we review some background material concerning Fourier decompositions
on the sphere. The proof of Theorem 2 is in Sect. 3. Section 4 is devoted to the Best
Separable State problem in quantum information theory.

4 Because of the integral, Kh is an “infinite” sum of squares. Standard convexity results can be used
however to turn this into a finite sum of squares. We provide more details later.

5 The fact that Reznick’s proof is based on this choice of kernel was observed by Blekherman in [9, Remark
7.3].
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2 Background

Spherical harmonics We review the basics of Fourier analysis on the sphere $¢~1.
Any polynomial p of degree n on the sphere has a unique decomposition

p=po+pi+--+pn pieHr! (10)

where each p; is a spherical harmonic of degree i. The decomposition (10) is known
as the Fourier-Laplace decomposition of p. The space Hfl is defined as the restriction
on S9~1 of the set of homogeneous harmonic polynomials of degree i, i.e.,

d .2
il
Hf = f\sdfl feR[xy,..., x4], homogeneous of degree i and A f = g —]ZC =0

k=1 %%k

Equivalently, the spaces Hl.d are also the irreducible subspaces of L?(S?~!) under the
action of SO(d). For example Hg is the set of constant functions, H‘f is the set of
linear functions, and Hg is the set of traceless quadratic forms. The spaces 'Hfl are
mutually orthogonal with respect to the L? inner product (f, g) = [ fgdo where do
is the rotation-invariant probability measure on the sphere. Note that if p is an even
polynomial (i.e., p(x) = p(—x)) then the only nonzero harmonic components of p
are the ones of even order.

Integral transforms Consider a general S O (n)-invariant kernel K (x, y) = ¢ ({x, y))
where ¢ is some univariate polynomial of degree L. The kernel K acts on functions
f 18971 - R as follows

KNw = [ K@ fodo) vees

To understand the action of K on arbitrary polynomials f, it is very convenient to
decompose ¢ into the basis of Gegenbauer polynomials (also known as ultraspherical
polynomials) (Cy(t))ren Which are orthogonal polynomials on [—1, 1] with respect

to the weight (1 — tQ)#d t. Using appropriate normalization (which we adopt here)
these polynomials satisfy the following important property:

,/.;d—l Cr((x, YD) pi (y)do (y) = 8ixpi(x)  Vx € 897!

for any p; € Hl.d . In other words, the kernel (x, y) +— Cr({x, y)) is a reproducing
kernel for Hl‘f. Now going back to the kernel K (x,y) = ¢({x, y)), if we expand
¢ = ACo + A1 Cy + -+ + A Cp, then it follows that for any polynomial p with
Fourier expansion (10) we have
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(Kp)(x) =/ o 1K(x,y)p(y)dJ(y) = Xopo(x) +A1p1(x) +---+ALpr(x)
yestT
Vx e ST (11)

The equation above tells us that the harmonic decomposition Ho ®H; D. . . diagonal-
izes K with the Gegenbauer coefficients (1;);=o

.....

,,,,,

expansion of ¢ in the basis of Gegenbauer polynomlals are given by the following
integral

Ci(1)
Cl (1)

= @l 3% (12)

where w; is the surface area of Sd LTt we let w(r) = (1 — t2) "2, one can check

that f71 Ci()*w(t)dt = %Ci(l), in other words, w" L \/C% has unit norm with

respect to w(t)dt.

Remark 2 Note that if the univariate polynomial ¢ (¢) is nonnegative on [—1, 1], then
the coefficients Ag, ..., Az in (12) satisfy A; < Ag foralli =0, ..., L since C;(t) <
Ci(1) forall r € [—1, 1]. We will use this simple property of the coefficients later in
the proof.

A technical lemma The following lemma will be important for our proof later. It shows
that the sup-norm of the harmonic components of a polynomial f can be bounded by
a constant independent of the dimension d, times the sup-norm of f.

Proposition 5 For any integer n there exists a constant By, such that the following
is true. For any homogeneous polynomial f with degree 2n and with decomposition
into spherical harmonics f =Y }_ fak on S9=1 with fi € H‘; it holds || farllco <
Bon |l flloo- Also By < 2 and B4 < 10.

Proof The proof is in “Appendix B”.

The remarkable property in the previous proposition is that the constant By, is inde-
pendent of the dimension d.

Remark3 When f is a homogeneous polynomial of degree 2n such that 0 < m <
f < M on S9!, Proposition 5 gives us that || fox||cc < B2, M. However one can get
a better bound by applying Proposition 5 instead to f — ||x ||%” (m + M)/2; this gives
| f2klloo < Bon(M —m)/2forallk =1,...,n

3 Proof of main approximation result

In this section we prove our main theorem, Theorem 2. We will actually prove a more
general result giving bounds on the performance of the sum-of-squares hierarchy for
all values of the level €. (In Theorem 2 stated in the introduction, only the regime
£ > Q(d) was presented.)

For the statement of our theorem we need to introduce two quantities that play an
important role in our analysis.
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e The first quantity, which we denote py,(d, £), is defined as (where n,d, € are

integers)
2n
d, 0 = min A — 1. 13
pud )= _ min Doy —1 (13)
r=1 k=1

Here, the minimization is over polynomials g (¢) of degree £, and Ay is the 2k’th
coefficient of ¢ (f) = (¢(r))? in its Gegenbauer expansion, see Equation (12). In
words, 02, (d, £) quantifies how close we can get the Gegenbauer coefficients of
o) = (g (1))% to 1 (note however that the distance to 1 is measured by |k5k1 — 1
and not linearly).

e The second quantity is the constant By, introduced in Proposition 5. It is the
smallest constant such that for any homogeneous polynomial f of degree 2n, we
have || forlloo < Bonll flloo forallk =0, ..., n, where fy; are the 2k’th harmonic
components of f.In other words, By, is an upper bound on the co — oo operator
norm of the linear map that projects a homogeneous polynomial of degree 2n onto
its 2k’th harmonic component. Proposition 5 says that such an upper bound that
only depends on 7 (i.e., independent of d) does exist. One can get explicit upper
bounds on B,,, for small values of n. For example one can show that By < 2 and
B4 < 10.

We are now ready to state our main theorem:

Theorem 6 Assume F(xy,...,xq) is a homogeneous matrix-valued polynomial of
degree 2n in d variables, such that F(x) is symmetric for all x, and 0 < F < I on
S9=1 Then F + (Ban/2) pan(d, )1 is £-sos on S9~1.

Furthermore, the quantity pz,(d, £) satisfies the following: for any n < d, there
are constants C,, Cl, such that for £ > C,d, pan(d, €) < C,(d /€)%

Proof (Proof of first part of Theorem 6) We will start by proving the first part of the
theorem. For clarity of exposition, we will assume that F is a scalar-valued polynomial,
and we explain later why the argument also works for matrices. Let thus F be a
homogeneous polynomial of degree 2n such that 0 < F < 1 on S~ !, Let

F=Fo+F+---+F, (FyecH%)
be the decomposition of F into spherical harmonics on S?~! (since F is even, only
harmonics of even order are nonzero). Given § > 0 to be specified later, we will exhibit

a sum-of-squares decomposition of F' = F + § by writing F = K K ~' F where K is
an integral transform defined as

(Kh)(x) := /S U yDh(o(y), Vx € 5T (14)

where ¢ (1) = (¢(¢))? is a univariate polynomial of degree 2¢. Recall that if 7 > 0
then the function K h is £-sos on §9! by construction, where the “infinite” sum of
squares in the integral can be turned into a finite sum of squares by standard convexity
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results.® In order for F = K K ~' F to be a valid sum-of-squares decomposition of F
on the sphere, we need that K ~' F > 0. The polynomial ¢ (¢) will be chosen so that K
is close to a Dirac kernel; when combined with F > § > 0 we will be able to conclude
that K—'F > 0 from the fact that || F — K ' (F)||o0 < 8.

Let (Ai)o<i<2¢ be the coefficients in the Gegenbauer expansion of ¢, i.e., ¢ =
MCo + A1Cy + -+ - + X2¢Cop. By the Funk-Hecke formula we have K‘l(ﬁ) =
Aal(Fo +48) + A;l Fr+- + A;nl F>,,. Our analysis does not depend on the scaling
of K so we will assume Ag = 1. Thus we get

i(l 1)F
—_— - 2%
A2k

k=1

< (Bu/2))
k=1

1

IK~'(F) = Flloo =
A2k

_I‘HszHoo

n
=2
o k=1

t
— -1
A2k

where in the last inequality we used Proposition 5 (see also Remark 3) together with
the fact that 0 < F < 1. It thus follows that if

Ban/2) Y iy — 11 <8 (15)

k=1

then K~ '(F) > 0 and the equation F = KK~ (F) gives a valid sum-of-squares
decomposition of F = F + § on the sphere. We have thus proved the first part of
Theorem 1. O

It now remains to prove the second part of the theorem, which leads us to the
analysis of the quantity pp,(d, £). Before doing so, we explain how the proof above
applies in the case where F is a matrix-valued polynomial.

Matrix-valued polynomials Assume F € S[x] homogeneous of degree 2n. We can
decompose each entry of F into spherical harmonics to get F = Fo+ Fo + - - - + Fy,.
Define F = F(x)+31 fora§ > 0to be specified later. The steps in the argument above
are identical, where || - || is defined as the maximum of || F (x)|| over x € S¢~!, where
|| F(x)] is the spectral norm of F(x), and the bound on || F>x ||« follows from Propo-
sition 17. If ||K_1F - 1[:”||OO < 8then K~'F > 0in the positive semidefinite sense.
Letting H = K~'F > 0, we get F(x) = (KH)(x) = [q-1 q({x, )2 H(y)do (y) =
Jga-1 Uy(x)Uy(x)do (y) where Uy (x) = g ({x, y)) H(y)"/?is apolynomial of degree
£ in x. This is what we wanted.
We now proceed to the analysis of ps,(d, £).

6 More precisely, note that one can find a finite number of points yq, ..., YN € $4=1 and coeffi-
cients aq, ..., ay > 0 such that the following is true: for any polynomial P of degree 2¢ we have
fsd,l P(y)do(y) = ZlN:l a; P(y;). (This essentially follows by Carathéodory’s theorem, see e.g., [2,
Chapter 1].) Then it follows that Kh(x) = lNzl aj¢((x, y;))h(y;) which implies that K% is a finite sum

of squares since ¢ ((x, y;)) = q({x, y'i))z.
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Reformulating p;,,(d, ¢) using generalized Toeplitz matrices It will be convenient
to reformulate the optimization problem (13) in terms of certain suitable (generalized)
Toeplitz matrices. We parametrize the degree-¢ polynomial ¢ (¢) as

14

Ci
)= e
i=0

VCi(1)

where e, ..., e; € R. The presence of the term /C; (1) is for convenience later. The
Gegenbauer coefficients of ¢ (t) = (g (1))? are then equal to (cf. Equation (12))

w41 G
A = Ck(l)(l t) dt
¢ 1
041 Ci(r) Cj@) Ci(t) 5 d=3
_ e 1— d
MZZO”J< o cmyomam t)
=e'T [Cr/Cr(D]e,

where for h : [—1, 1] - R, 7 [h] is the (¢ + 1) x (£ + 1) symmetric matrix

2,43
h(t)(1 — ) 2 dt.

1, ,
Tih):, _ @d— 1/ Ci() Cj(®

Ci(l) /C;(1)

It can be easily checked that T[l] = [ is the identity matrix (this follows from the fact

Wd

that the polynomials /==L m have unit norm with respect to the weight function
(1 — 2)(‘1 3)/2) and so )»0 =ele = Zk ek It thus follows that py,(d, £) can be

formulated as:

n
pu(d. 0 = min X_:

2k ‘%:1 B

(r[es)e)
T =% _le) —1]. (16)
Cy (1)

Case 2n = 2 Let us first analyze the case 2n = 2 which corresponds to quadratic
polynomials. In this case the sum in (16) has simply one term. It is then not difficult
to see that py(d, £) is given by

. 0) HT[ 2 } o (17)
p2la, t) = -

Ca(1)
where || - || denotes the spectral norm. Thus we see that p2(d, £) can be computed

efficiently by simply evaluating the spectral norm of 7[C,/C>(1)]. The latter matrix
can be formed explicitly using known formulas for the integrals of Gegenbauer poly-
nomials (see e.g., [23]). Note that 7[C>/C>(1)] is a banded matrix with bandwidth
3.
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Case 2n = 4 We now turn to quartic polynomials. In this case p4(d, £) takes the form

d,0)= mi TT& )1_1 TT& 71_1
pald, _Z”Ji{“ “lanlf “lam]” '

=1
(18)
Let R be the joint numerical range (also known as the field of values) of the matrices

C C .
T [_62(21)] and T [_C4(41)]’ ie.,

¢
R = (eTT|: i ]e, eTT|: G ]e):ee]RHl,Ze,%:l .
Ca(1) Cq(1) =

From results about joint numerical ranges, it is known that R C R2 is convex, see
[10] and also [33, Theorem 5.6]. It is not difficult to see then that R has a semidefinite
representation, and that p4(d, €) can be computed using semidefinite programming.

+

General degree 2n We now analyze the case of general degree 2n. To do this we
formulate a proxy for the optimization problem that defines p»,(d, €) that is easier
to analyze. Instead of minimizing Ziil |k2_k1 — 1| we will seek instead to minimize
Z,%';l (1 — Agx). Since Ayr < Ao = 1, both problems seek to bring the Aok close to 1,
but the latter problem is easier to analyze because it is linear in the Ay;. Define

n

pon(d. €)= min 3 (1 =TT [Co/Cor(D]e). (19)

Since 7 is linear, i.e., 7[h| + h2] = T[hi] + T[h2] we get that po,(d, ) = n —
NAmax (7 [h]) where h = % Y k=1 Cax/Cax(1). It thus remains to analyze Amax (7 [h]).
This is what we do next.

Proposition7 Leth =13, % Then Amax (T [h]) > 1 — %%

Proof We use the following standard result on orthogonal polynomials which gives
the eigenvalues of 7 [ f] for any linear polynomial f. (The result below is stated in
full generality for clarity, in our case the (py) is the family of normalized Gegenbauer
polynomials.)

Proposition 8 (Standard result on orthogonal polynomials) Let (px)ren be a family
of orthogonal polynomials with respect to a weight function w(x) > 0. We assume
the (px) are normalized, i.e., fp,%w = 1. Given a linear polynomial f, define the
€ +1) x (£ 4+ 1) matrix

b
T1fij =/ pip;@) f(Ow)dr VO <i,j<L (20)

Then the eigenvalues of T| f] are precisely the f(x¢y1.;) where the (X¢4+1,i)i=1,....¢+1
are the roots of pe+1.
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Proof This follows from standard results on orthogonal polynomials. When f = 1
then 7[ f] is the identity matrix. When f(¢) = ¢, the matrix 7 [ f] is the tridiagonal
matrix that encodes the three-term recurrence formula for the (py). It is well-known
that the eigenvalues of this tridiagonal matrix are the roots of pyyi. See e.g., [30,
Lemma 3.9]. O

Our function A(t) = 1 Zk 1 CZkg; is not linear. However one can verify (see
Proposition 18) that it is lower bounded by its linear approximation at ¢ = 1, i.e., we
have

h(t) = W' (1) — 1)+ h(1).

It is easy to check that if /1, hy are two functions such that /1 (t) > ho(¢) for all

€ [—1, 1], then T[h] > 7 [h;] (positive semidefinite order) and thus the largest

elgenvalue of 7T[hi] is at least the largest eigenvalue of 7 [h;]. Let h(t) = h' ()@t —

1) + A(1). The largest eigenvalue of TTlh] is equal to h(xz_H ¢+1) where xg41 ¢41 is

the largest root of Cy4 1. It is known [12, Section 2.3 (last displayed equation)] that
Xg4+1,0+1 satisfies

. 14?2
Xe4+1,041 = 12

It thus follows, using the fact that 2(1) = 1 and 2’(1) > 0, that

o , o d? n d*
Amax (7 [h]) = Amax (T [h]) = h(x8+1,i+1) > —h (l)w +1>1- E : 6_27

where in the last inequality we used the exact value of A'(1) given by 7/(1) = (n +
1)(3d +4n —4)/(3(d — 1)) and the fact thatn < d. O

Our proof of Theorem 6 (i) is now almost complete. We just need to relate p back
to p. We use the following easy proposition.

Proposition9 If p < 1 then p < p/(1 — p).

Proof Let (L) be the optimal choice in the solution to p (Eq. (19)). Then Ay =
1—(1=a) = 1—p > 0.Thus Y0 |A5 — 1] = Y} (1= Ao) /Aok < /(1= ).

Proposition 7 tells us that o, (d, £) < (7n2/12)(d/£)?. For £ > 2nd, we will have
pan(d, €) < 1/2 and so p2,(d, €) < 2pon(d, ) < 2n°(d/€)*. This completes the
proof of Theorem 6.

Tightness Our analysis of p»,, (d, £) in the regime £ > Q2 (d) can be shown to be tight.
We show this in the case 2n = 2 below.

Theorem 10 (Tightness of convergence rate) There is an absolute constant C > 0 such
that for £ > Q(d), p>(d, £) > C(d/£)>.
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Proof Given the expression for py(d, £) in (17), we need to produce an upper bound
on [ T[C2/C2(1)]|l. Note that Co(1)/C2(1) = 79512 — L. Tt thus follows that
T[Cy/Cr ()] = %T[Iz] — ﬁ We now use the following property of general-
ized Toeplitz matrices constructed from sequences of orthogonal polynomials: If 7,
denotes the semi-infinite version of (20), then 7oo[ f17x0[g] = Zoo[ fg] for any poly-
nomials f, g (this property follows immediately from the fact that the sequence of
orthogonal polynomials (pk)Z2, is an orthonormal basis of the space of polynomials,
see e.g., [3, Lemma 2.4]). In particular we have Toolt?] = Too[t]*. Now noting that
Toolt] is tridiagonal, we see that T[£2]is a submatrix of (Ty42[11)?, where the subscript
indicates the truncation level (so Zyy2[f] is (£ + 3) x (£ + 3)). Thus it follows that
T[C2/C2(1)] is a submatrix of 795 (Zg42[t])? — 7151. Since (Tg42[1])? is positive
semidefinite it then follows that

d 1
I7TC2/C2(D]Il < ﬁ)\-max(ﬂ+2[l])2 -

Recall that Apax (Zg42[2]) is the largest root of Cyy3. From [1, Corollary 2.3] we get,
for £ > Q(d), kmax(ﬂ+2[t])2 <1-— C(d/K)2 for some constant C. Thus we get
p2(d, ) = | T[C2/C2(D]|7" — 1 = C(d/£)? as desired. o

4 Relation to quantum state extendibility

Quantum entanglement is one of the key ingredients in quantum information process-
ing. Certifying whether a given state is entangled or not is a hard computational task
[20] and considerable effort has been dedicated to this problem, e.g., [21,26]. Of par-
ticular interest is the hierarchy of tests known as the DPS hierarchy [17,18], applying
semidefinite programs to verify quantum entanglement.

In this section, we explore the duality relation between the DPS hierarchy and sums
of squares, and explain how our results from the previous section can be used to bound
the convergence rate of the DPS hierarchy. We show that the result of Navascues et
al. [28] can be seen as the special case of our Theorem 6 when the polynomial F is
quadratic.

4.1 Quantum extendible states

A quantum state is usually represented by a positive semidefinite operator normalized
with unit trace. In this work, we mainly work with unnormalized quantum states and
consider its convex cone. Given Hilbert spaces H 4 >~ C44 and Hp ~ C98, denote the
cone of bipartite quantum states as S(H 4 ® H ), i.e., the cone of positive semidefinite
matrices of size d4dp. A bipartite quantum state pap € S(H4 ® Hp) is separable if
and only if it can be written as a conic combination of tensor product states, i.e.,

PAB = Zpi(xl'x:) ® (yi)’j) with p; > 0,x; € Ha, yi € Hp. (21)

1

@ Springer



The sum-of-squares hierarchy on the sphere and...

The convex cone of quantum separable states is denoted as SEP(H4 ® Hp) and it is
strictly included in S(H4 ® Hp).

Positive partial transpose A well-known necessary condition for a state p4 p to be in
SEP is that it has a positive partial transpose (PPT). If we let T denote the transpose
operation on Hermitian matrices of size dp x dp, then for psp of the form (21) we
have

I ®T)(pap) = Y pitix)) @ iy =Y pilxix)) ® Gizi") = 0.

If we let PP7 (Ha ® Hp) be the set of states with a positive partial transpose then
we have the inclusions

SEP(HA® Hp) C PPT(Ha ® Hp) C S(Ha ® Hp).

A well-known result due to Woronowicz [35] asserts we have equality SEP(H4 ®
Hp) = PPT (HA®Hp) if and only if dimensions of H 4 and H p satisfy dy +dp < 5.

Extendibility When the inclusion SEP # PPT is strict, one can find more accurate
relaxations of SEP based on the notion of state extendibility. For simplicity of the

following discussion, we introduce the notation [s1 : s2] = {s1,s1 + 1, -+, 52}
and [s] := [1 : s] for short. Given a separable state expressed as Eq. (21) with’
llxill = llyill = 1 we can consider its extension (on the B subsystem) as:
T +\®¢
pany = Y pixix} @ (i) (22)
i

The new system pap,, lies in S(Ha ® Hp, ® - ® Hp,) where each Hp, =~ Cds,

i.e., it is a Hermitian matrix of size dy4 (dg)e X da (dB)Z. The system p4 B satisfies a

number of properties, as follows:

(a) Positivity: papy, is positive semidefinite

(b) Reduction under partial traces: If we trace our® the systems B», ..., By from
PABy, We get back the original system p4p. Indeed we have:

" Fero1] ;
Trpy PABY = 9 PiXiX, @iy, Tr [(yiy,- )& 1] =3 pixix[®@yiy! = pas.
i i

(23)
In () we used the fact that || y; || = 1.
(c) Symmetry: define the symmetric subspace of H®* as

Sym(HW):{YeH@f:P-Y:Y VPGG(}

7 We can always impose such condition without losing generality by changing the coefficients p; accord-
ingly.

8 The partial trace operator is the unique linear map Trp : Herm(H 4 ® Hp) — Herm(HH 4) such that
Trg(pa ® o) = Tr(opg)py forall pg € Herm(H 1) and op € Herm(H p).
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where Gy is the symmetric group on ¢ elements which naturally acts on H®* by
permutation of the components. The dimension of Sym(H®*) is equal to (”‘éil)
where d = dim . If we let IT = TT" be the projector on the symmetric subspace
of H%Z then one can easily verify that I1 (ny)W I1= (yy+)®£. It thus follows
that the extension pa g, of Eq. (22) satisfies

(I @ IDpapy (I @ TI) = papy,- (24)

(d) Positive Partial Transpose: If we let T be the transpose map on Hermitian matrices
of size dg X dp then py By satisfies

(IA ® TB] - 'TBS ®IB,'+1 - IB[)(IOAB[@]) = 0 (25)
—_— —
s
forany s = 1, ..., £. For convenience later the state on the left of (25) will be

T
denoted p A’EL.

The DPS hierarchy Define now the set DPS;(Ha ® Hp) as

DPSi(Ha ® Hp) = [a) € S(Ha ® Hp) s.t. Joany, € S(Ha ® Hp, ® -+ Hp,)

s.t. conditions (23), (24), (25) are satisﬁed}.

By the previous reasoning, each set DPS,(H4 ® Hp) is a convex cone containing
SEP(HA ® Hp), i.e., we have

SEPC...CDPS; C---CDPS, CDPS; CS.

Note that DPS| = PP7T. Also it is known that the hierarchy is complete in the sense
that if p ¢ SEP then there exists a £ € N such that p ¢ DPS, [17,18].

Remark 4 (Extendibility without PPT conditions) One can also consider the weaker
hierarchy where the Positive Partial Transpose constraints are dropped:

EXT;(Ha ® Hp) = {w € S(Ha ®Hp) s.t. 3wapy, € S(Ha @ Hp, ® -+ Hp,)

s.t. conditions (23) and (24) are satisﬁed}.

(26)

It turns out that this weaker hierarchy EX7; is already complete in the sense stated
above. This is usually proven using de Finetti theorems [11,24].

4.2 Hermitian polynomials and sums of squares

In this section we leave the quantum world and introduce some terminology pertain-
ing to Hermitian polynomials. A Hermitian polynomial p(z, z) is a polynomial with
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complex coefficients in the variables z = (z1, ..., z,) and Z = (21, . . ., Z) such that
p(z,2) € Rforall z € C". If u € N" we define the monomial z := z|' - --z,". The
general form of a Hermitian polynomial is

P = Y pwi?’  (pw€Cand ACN' x N")
(u,v)eA

where the coefficients py, satisfy p,, = Pou. We say that p(z) is nonnegative if
p(z) > 0forall z € C".

Definition 11 (Hermitian polynomials and sums of squares) Let p(z, Z) be a nonneg-
ative Hermitian polynomial. We say that p(z, ) is a real sum-of-squares (rsos) if we
can write p(z,2) = ) _; &i(z, 7)? where g;(z, ) are Hermitian polynomials. We say
that p(z, z) is a complex sum-of-squares (csos) if we can write p(z,2) =Y, lgi (z)|2
where ¢; (z) are (holomorphic) polynomial maps in z (i.e., g; are functions of z alone
and not ).

Clearly if p(z,7) is csos then it is also rsos since |¢(z)|> = Re[q(z)]* + Im[g(2)]*
and Re[g(z)] and Im[g(z)] are both Hermitian polynomials. The converse however is
not true. For example p(z,z) = (z + 2)2is evidently rsos, however it is not csos [16,
Example (a)]. Indeed the zero-set of a csos polynomial must be a complex variety, and
the zero set of p(z, z) here is the imaginary axis. Note that a Hermitian polynomial
p(z, z) is rsos iff the real polynomial P (a, b) = p(a+ib, a —ib) is a sum-of-squares
(in the usual sense for real polynomials).

4.3 The duality relation

An element M € Herm(dadp) is in the dual of SEP(H4 ® Hp) if, and only if the
Hermitian polynomial pj, defined by

pu(x, %, 3, ) = Y Mijuxi%y; i, VxeCM yeC® (27
ikl

is nonnegative for all (x, y) € C% x C48. We prove our first main result on the duality
between the DPS hierarchy and sums of squares.

Theorem 12 (Duality between extendibility hierarchy and sums of squares) For M €
Herm(dadp), we let ppy be the associated Hermitian polynomial in (27). Then we
have:

(1) SEP* ={M € Herm(dadp) : puy is nonnegative}.
(i) DPS; = {M € Herm(dadp) : |y1*“~V pa is rsos}.
(i) EXTS = {M € Herm(dadp) : |y1*“=V pyy is csos}.

Proof Point (i) is immediate and follows from the definition of duality. Points (ii) and
(iii) are proved in “Appendix C”. O
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Quantum States DPS; D --- D DPS; D --- D SEP
duality * * *
Hermitian Polynomials pjs 1-SOS C --- C ¢-SOS C --- C Nonnegative

Fig. 1 A summary of the duality relations between the DPS hierarchy and sums of squares. The notation
£-SOS is a shorthand for \|y\|2(5*1)pM is a real sum-of-squares

The above diagram summarizes the situation (Fig. 1).

In terms of the support functions The support function of the set DPS; is defined
as

h M) = Tr[M
pps, (M) pgﬁapxsl r[Mp]

where M € Herm(ddp). The duality relation of Theorem 12 allows us to express
hpps, (M) in the following way:

: 2(e-1 214112 :
hops, (M) = min y st [y[*“V @ 12117 ~ pa) is rsos.
A somewhat more convenient formulation using matrix polynomials is as follows. For
x € C?, welet ¥ € R? be the vector of real and imaginary components of x. Given

M € Herm(dadp), let also ISM@) € S[y] such that, for any (x, y) € Car x C98 we
have

@Y Mx®y) =3Py
Then one can show the following equivalent formulation of hpps, (M):
hpps,(M) =min y s.t. yI — ISM@) is £ — sos on §2¢81 (28)

This can be proved using the following lemma, which is a straightforward generaliza-
tion of [15, Proposition 2] to the matrix case.

Lemma 13 Let G(y1, ..., Ya) be a homogeneous matrix-valued polynomial of even

degree 2n, such that G(y) is symmetric for all y. Then G is £-sos on S~ if and only
if. Iy G (y) is a sum of squares.

4.4 Convergence rate of the DPS hierarchy

In [28, Theorem 3], Navascues, Owari and Plenio’s proved the following result on the
convergence of the sequence of relaxations (DPSy) to Sep.
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Theorem 14 (NOPOQ9) For any quantum state pag € DPS; with reduced state py :=
Trelpanl, we have

1
(1= 1)pag +1p4 ® i € Sep(d) (29)
2
wheret = O (i—g) dp = dim(Hp), and I is the identity matrix of dimension dp.

Note that the state p4 ® Ip/dp is clearly separable. In words, the result above says
thatif p4 p in DPSy, then by moving p4 p in the direction ps ® Ip /dp by t = O(dé/ﬂz)
results in a separable state. In terms of the Best Separable State problem, the result
of [28] has the following immediate implication. We show below how we can recover
this result using our Theorem 6 from the previous section.

Theorem 15 Let M € Herm(dadpg) and assume that (x ® y)"“M(x ®y) > 0 forall
(x,y) € C x C9. Then

hsep(M) < hpps, (M) < (1 + Cd;/€*)hsep(M)
forany £ > C'dg, where C, C' > 0 is some absolute constant.
Proof We know from (28) that
hpps, (M) =miny s.t. yI — f’M()?) is{ —sosony € §2ds—1,

By assumption we have 0 < Py () < hsep(M)I forall y € §2d8=1_Our Theorem

6 from previous section tells us that for £ > Cdp, C’dé /62 + %

on 2451 This implies that hpps, (M) < hsep(M)(1 + C'd%/€?) which is what we
wanted. m|

is £-sos

5 Conclusions

We have shown a quadratic improvement on the convergence rate of the SOS hierarchy
on the sphere compared to the previous analysis of Reznick [34] and Doherty and
Wehner [19]. The proof technique also works for matrix-valued polynomials on the
sphere and surprisingly, the bounds we get are independent of the dimension of the
matrix polynomial. In the special case of quadratic matrix polynomials, we recover
the same rate obtained by Navascues, Owari and Plenio [28] using arguments from
quantum information theory.
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A The sum-of-squares hierarchy on the sphere

In this appendix we clarify the sum-of-squares hierarchy that we study, defined in
Eq. 2). Let p(x) = p(x1, ..., xq) be a homogeneous polynomial of even degree 2n.
The £’th level of the hierarchy for the maximization of p on the sphere §”~! is defined
by:

p¢ = min {y € Rs.t. y — pis a sum of squares of degree ¢ on §d-1 } . 30)

The constraint in the equation above means that there exist a sum-of-squares polyno-
mial s(x) such that y — p = s(x) forall x € §"~! (i.e., y — p(x) is equal to s(x)
in the quotient ring R[x]/I where [ is the ideal generated by Z?:l xi2 — 1). Since
two polynomials are equal on S?~! if, and only if, their difference is a (polynomial)
multiple of Zflzl xiz — 1, our hierarchy can be equivalently written as:

pe = min y 31)
st. y—px)=skx)+ (1 — Zflzlxl?) h(x)
s € R[x] is a sum of squares, degs < 2¢
h e Rlx],degh <2¢ —2
The equality y — p(x) = s(x) + (1 — Z?: 1 xl.z)h(x) in the constraint is an equality of
polynomials in the polynomial ring R[x]. Formulation (31) coincides precisely with
the usual way the sum-of-squares hierarchy is formulated on general semialgebraic
sets (the hierarchies arising from Putinar’s and Schmiidgen-type Positivstellensatz
coincide here because the semialgebraic set $?~! is defined using a single polynomial
equation). Also note that since deg p = 2n the first meaningful level of the hierarchy
is £ = n; otherwise (31) is not feasible. We finally note that another equivalent way
of writing py is the following:

p¢ = min {y e Rs.t. ||x||§(g_n)(y ||x||%" — p(x)) is a sum of squares in R[x]} .

This is proved in [15, Theorem 3].

B Some technical results on polynomials on the sphere

We use the following lemma which appears in [34]. Recall that the Laplacian of a
02
twice differentiable function f : RY — Ris Af = >/ f

i=1 ax} ’
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Lemma 16 [34] If f is homogeneous polynomial of degree n on R and || f oo < M,

then ||Akf||(><> < dk(n)ZkM, where A is the Laplace operator and (n),, := n(n —
1)---(n— (m — 1)) is the falling factorial.

Proposition 5 (restatement) For any homogeneous polynomial f with degree 2n,
denote its spherical harmonics decomposition as f = Y j_ fa on SA=1 with
fi € H‘;. Then for any k, it holds || forllococ < Bonll fllco, Where By, is a constant

that depends only on n (and independent of d). Also By < 2 and B4 < 10.

Proof For simplicity of exposition we prove first the cases 2n = 2 and 2n = 4, before
considering the general case. The result is immediate when 2n = 2 with By = 2
since the harmonic decomposition of a quadratic polynomial is f = fy + f> with
fo = [gar fdo.Then |fo| < || fllec and || f2llcc = I.f = folloo < 2I| fllco-

The first nontrivial case is 2n = 4. The decomposition of a quartic polynomial
on the sphere is f = fo + f> + fa. Clearly || folloo < IIfllcc- We thus focus on
bounding || f2]lc0. Since f is homogeneous note that f(x) can be written as f(x) =
X1 fo+ lx 112 f2(x) + fa(x) for all x € R?. Using well-known identities concerning
Laplacian one can check that

A(fx) = A(lxlI* fo + X117 f2(x) + fa(x))
= A(lxI*) fo + Adllx|? f2(x))
=4(d +2)|Ix 1 fo + AUx[IP) f2(0) + 2(VIIx |7, V 2(x)) + A(f2(x))
= 4(d + 2)|1x 1% fo + 2(d +2) fo(x).

In the second and the last lines we used that A f>;(x) = 0 since the fy; are harmonic.
In the third line we used A(||x||*) = 2kQ2k +d — 2)||x||**"2 and A(h o g) =
(Ah)g+2(Vh,Vg)+h(Ag).Inthelastline we used the identity (x, Vg(x)) = 2kg(x)
for any homogeneous polynomial g of degree 2k and x € S¢~!. It thus follows that
fr(x) = 575 Af (x) = 2]x]|? fo. By Lemma 16 we know that [ A f [lec < 12| f]|co-

It thus follows that || f2llec < 5251l flloo + 2ll flleo < 81l flloo- Finally || fallec =

If — (fo+ f2)lleo < 10| f]lco by the triangle inequality. Thus B4 < 10.

We now proceed to prove the general case. Let f (x) be a homogeneous polynomial
of degree 2n and let f = fo+ f>+- - -+ fa, beits spherical harmonic decomposition.
Note that f(x) has the following expression f(x) = > }_¢ 7“0 f (x) for all
x € R, Since fo; is a spherical harmonic, direct calculations give us

Frdm i IX 207K £ (x) ifm <n—k

0 otherwise,

A" (P70 for () = {

where,
Fndmk =4"M—k)y (n+k+d/2-1), =0d™m).
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Thus by linearity, we have

n—m n—m
A" Fx) =Y A" (PP e (0)) = D rnam il IPO T e (x) - Vx e RY
k=0 k=0

When restricted on the unit sphere, we have the inequalities

—m—1
IA" flloo + D40 Tnd.mkll faklloo

Yn,d,m,n—m

_ 4"l flloo + 3025 rudumikll koo

= )

Yn,d,m,n—m

” fZ(n—m) ”oo =

where the second inequality follows from Lemma 16. Forany 0 < k <n —m — 1,
we have

ndmk 4m(n_k)m(n+k+d/2_1)m <(n_k)m

= < <n! < (2n).
Yn,d,m,n—m 4" (m)ym (n + (n —m) + d/2 - l)m (m)m
Moreover, for any m < n we also have
m m
d"(2n)oy, _ (d/2) (2n)om < (2n)om < @2n),

n,d,m,n—m B 2Mm)y (n+(n—m) +d/2 — l)m = 2" (m)py,

where the first inequality holds since each term in the falling factorial (n + (n — m)
+d/2 —1),, is no smaller than d/2. Thus we have

n—m—1
||fz<n_m>||oos<2n>![||f||oo+ 3 ||fzk||oo].

k=0

By induction, we have the estimation

I f2tlloo < 11f lloo @) T1+ 2m)11E < || flloo@m)![1+ @n)!]", k.
Thus we have By, < (2n)![1 4 (2n)!]" independent of d. O
We can extend Proposition 5 to matrix-valued polynomials on the sphere.

Proposition 17 Letr F(x) € S¥[x] be a k x k symmetric matrix-valued polynomial of
degree 2n. Let || F|loc = max, cga—1 | F(x)|| where || - || denotes the spectral norm.
If F = Fo 4+ F> + -+ + Fyy, is the harmonic decomposition of F, then || Fai|lco <
Boy || F |l oo Where By, is the constant from Proposition 5.

Proof We can assume without loss of generality that ||F|| = 1. Note that
[Fl = max,cg—1 max, g1 |yTF(x)y|. For any fixed y € Sk=1" define the
real-valued polynomial fy(x) = yTF(x)y. By assumption on F we know that
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I fylloo = max,cga1 |[yTF(x)y] < 1. The spherical harmonic decomposition of
fy is given by fy(x) = Z/%io yTFy(x)y since, for fixed y, y"For(x)y is a lin-
ear combination of the entries of Fy; which are all in H‘zik. It thus follows from
Proposition 5 that ||y" Fox(:)yllee < Ban. This is true for all y € S¥~! thus we get

max, c gk—1 Max ¢ gd—1 IyTsz(x)y| < Boy, i.e., || Fax |l < By, as desired. O
We will also need the following technical result about Gegenbauer polynomials.

Proposition 18 Let C;(t) be the Gegenbauer polynomial of degree i. Then for the
curve of C; lies above its tangent att = 1, i.e., C;(t) = C/(1)(t — 1) + C;(1) for all
tel[-1,1].

Proof Let (1) = C/(1)(t — 1) + Ci(1). Let @ = max {x € (0, 1) : C/(x) = 0}. It is
known that C; («) < Oandthat |C;(¢)] < |C; ()| forallt € [0, a] (see [29, 18.14.16]).
By standard arguments on orthogonal polynomials, we know that C;" > 0 on [a, 00).

Thus the inequality C;(¢) > [(¢) is true on ¢ € [w, 1]. For ¢t € [0, «] it also has to be
true since

Ci(t) = —|Ci(@)| = Ci(a) = (o) = 1(1).
Using the fact that Cf(l)/Ci(l) =1i(i +d —2)/(d — 1), one can easily check that
1(0) < —C;(1),and so Ci(t) > —C;(1) > [(¢) forall € [—1,0].
C Duality relations DPS and SOS (Theorem 12)

In this section we prove that for any integer £ > 1, we have the duality relation
DPS; = [M Ay 1PV payis rsos} . (32)

The key is the following lemma which gives a semidefinite programming charac-
terization of the right-hand side of (32).

Lemma 19 For any Map € Herm(H ® Hp) and integer £ > 1, then ||y||*“~V py
is a rsos if and only if there exist positive semidefinite operators Ws ap,, > 0, s =
0,1,---, ¢ such that

14
:
VPV o =3 (x @52 @39 ) Woam, (x@ 5 @) (33)

TOOT
= (x ® y®5) Wsj‘%[l] (x ® y®z) Vx e Ha,y € Hp. (34)

The proof of the previous lemma is based on analyzing the biquadratic structure
of puy to see which monomials can appear in a sum-of-squares decomposition of
[v17“=D pps. The proof is deferred to the end of this section.
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Using Lemma 19, the proof of (32) follows from standard duality arguments which
we now explain.
First, we can dualize the semidefinite programming definition of DPS, to get

DPS; = {MABI : Map, ® Ipyy = (YAB[ZJ e Yapy, Hf + Z s, ABm
s=0

whereYAB € Herm, W; apy,, >O,Vse[0:€]}.

The variable Wi 4 By for s = 0 (resp. s = 1,...,£) is the dual variable for the
positivity constraint on pa gy, (resp. PPT constraint (25)).

Proof of Theorem 12 The proof consists of two directions. Assume M € DPS;. Then
there exists a Hermitian operator Y4 By and positive semidefinite operators Wi 4 By =
0,s =0,1,---,£such that

Mag, ® Iy, = [Yany — (I ® M) Yap,, (I @ Ty | + Z W ﬁ%m (35)
s=0

Recalling that IT; is the projector onto the symmetric subspace, we have [Ty®¢ = y®¢
for any vector y. Thus

+
(x ® y®e> (Yagyy — (I @ ) Yap, (I @ Ty)) (x ® y®l) =0,
Vx e Ha,y € Hp.

Evaluating Eq. (35) on both sides at the state x ® y®¢, we have
2t=1) or)' ®¢
Iyl w=(r@y®) Map, ® Iny, (x @ y*)

14
oo
- (x ® yW) LAY (x ® yW) . (36)
s=0

According to Proposition 19, we have || y||?“~1 py is a rsos.

On the other hand, suppose || y[|>“~1 py; is a rsos. From Proposition 19, there exists
positive semidefinite operators W 4 By = 0,s =0,1,---, ¢suchthat Eq. (36) holds.

Since y®¢ forms a basis on the symmetric subspace of B ®Hp, ® - @ Hp,, it
implies that the operators

Map, ® Ip,, and Z AAB[[
s=0
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coincide when restricted on the symmetric subspace Sym(H®¢). That is,

V4
Tp,,
(I @ M) (Map, ® Ipp,) I @ Tlp) = (I ® T) (§ j Wsjgm> (I ® Iy).
s=0

Take the Hermitian operator

oot
Yasy = Map ® Igpy — Y W, 2
ABy -= MAB B 5,ABjg"
s=0

Then by the definition of Yap,,, we have T1¢Yap, 1y = 0 and

¢
Ts,,
Mag, ® I,y = [Yagy — (I @ o) Yap, (I @ Te)| + Z WS’A[‘I]gm,
s=0

which implies Mg, € DPS;. O

It remains to prove Lemma 19. To have an easier understanding of the result in
Lemma 19, let us first have a look at the special case on the second level of the
hierarchy, i.e, £ = 2. This will give us the key idea without loss of generality, and the
higher level case is just a straightforward generalization.

Lemma 19 (special case £ = 2) For any Hermitian operator Map,, we have
that ||y||?>py is rsos if and only if there exist positive semidefinite operators
Wo,AB,B,» W1,4B,B,» W2,4B,B, > 0, such that

V2P (%9, ) = x @y ®y) Woaps,(x @y®y)
+x®F®Y) Wiapp(x®F®Y)

+(®F®F Woapp(x®F®F)  VxeMHa,y e Hp.
(37)

Proof If there exist operators Wy, Wi, W, > 0 such that Eq. (37) holds, then
||y||2 pm can be shown to be rsos by using the spectral decompostion of W;. For
the converse suppose ||y||?py is rsos. Then there exist polynomials f,,(x, %, y, ¥)
such that ||y|®pm(x,%,y,7) = Yom fm(x, %, y,7)%. Since the monomials of
||y||2pM(x, X,y,y) are all of the forms X;x,,y;yky-y, (they are degree 2 in (x, x)
and degree 4 in (y, y), then the possible monomials of f;,(x, x, y, y) can only be
given by

{50 Y ks Xi 9 ks Xi 3 Vs Xi ¥ j ks Xi ¥ Vi, Xi ¥}

The existence of any other monomials in f, (x, X, ¥, ¥), such as x;x; yx, will not be
compatible with the monomials in ||y||>py (x, X, y, ¥). Thus the most general form
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of fi(x, X, y, y) can be written as the linear combinations,

_ _ 0 1 — 2 - =
fu, By, ) = a" iy + Y alhoxiyive+ Y alxy; e

i,j.k i,j.k i,j.k
+me,0 = =. = +me,l =.5 +me,2 = .
i kXY YVk i, j kX YiYk i, j ki YjVi-
i,j.k i,j.k i,j.k

Since f;,(x, X, y,¥y) € R, we have

—m 0 b m,1 bm.l b

ljk z]k’ ljk zj,k’ ljk Vl’]’k’m’

ljk’

Comparing the monomials of ), fi (x, X, y, 7)? and X; x,, ¥ i Yk Yryr, the terms, such
as

m,0 m,1 -
ai’j’kxzy/)’k al’,j’kxlyjyk
m i,j.k i,j.k

have to vanish, since the resulting monomial x;y; yxx;y s yx is not compatible with
XiXmYjykyryr. After we getrid of those incompatible monomials, we have

me(x %5,5)7° —22(’ Za,]kxly]yk’ +‘Z ,,kxzyjyk‘
i,j.k
m,2 - _?
+| Yo" Xy ).

i,j.k

Then we can construct matrices Wy, W1, W whose elements are respectively given
by

(WO)I,j,k,r,s,t = 22‘1, i k9, ;‘ s (Wl)z,j,k,r,s,l = zza, j, k Gr, ,v s (W2); Jjakir,s.t
_ -m,2 a™ 2
22 1] k r,s,t:
By construction, we know that Wy, Wi, W> > 0 and

IV (x, %, 9, 5) = 3 fin (6, 5,9, 9 = (x ® Yy ® ) Wo a5, (x ® Yy ® y)
+ @YY Wianp(x®F®Y)
+ xRV Waas s ®F®7),

which completes the proof. O
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Lemma 19 (general result, restatement) For any Hermitian operator M s g, and integer
€ > 1, we have that || y||*“=Y pas is rsos if and only if there exist positive semidefinite
operators Wy ap, > 0, s € [0 : £] such that

£
_ _a\F - _
”y”Z(Z 1) — Z (x ® y®S ® y®£ S) WS,AB[[] (x ® y®S ® y®€ S) (38)
s=0
£

TooT
(x ® y®£) Wijé[z] (x ® y®£) Vx € Ha,y € Hp. (39)

(=}

s=|

Proof Note that the second equality trivially holds due to the equation x'Zx =
& TZT(x). We will prove the first equality. If Eq. (38) holds for positive semidef-
inite operators W ap,,, then it is easy to check that 112D par(x, %, v, 7) is arsos
by using the spectral decomposition of Ws g,

On the other hand, if ||y||*“~Vpy(x,X,y,y) is a rsos, by definition there
exist Hermitian polynomials f,,(x,,y,¥) such that ||y|?“~Vpy(x, %, y,5) =
Yom fmx, X, y, 7)2. In the following, we will compare the monomials on both
sides of this equation and explicitly construct W 4p,, from the coefficients of
Zm fm(x, X, y, )7)2. We first note that the monomials of ||y||2(z_1)pM(x, X,y,y)are
all of the form

xike [ [ S, (40)

which is of degree 2 and 2¢ with respect to x and y, respectively. Then the possible
monomials of f,(x, X, y, ¥) can only be of degree 1 and £ with respect to x and y,
respectively. That is, the possible monomials are given by

14 4

{xtl_[)’rl I1 yr,} and {xtl_[)’r, I1 yr,] ;
s=0 s=0

i=s+1 i=1 i=s+1

where we denote the term ]_[ —S1( ) = 1if sp < s1. These monomials are basically
formed by the ones with different number of complex conjugation over the symbol y.
Therefore, the most general form of f,,(x, X, y, y) can be written as a linear combi-
nation of these monomials:

Ja
fu@ 2y, 9 =" aly (xtl_[yrl [1 yn)

s=01,r1¢] i=1 i=s+1
xyo (T 115
=01, i=1 i=s+1
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Since f,(x,x,y,y) € R for all x, y, we know that the coefficients between the
conjugate monomials have to be conjugate with each other. That is, @, = b/

holds for all m, s, t, rj¢}. Comparing the monomials of Zm fm(x, X, y, y) and the
monomials in Eq. (40), we have

D py(x, %y, ) = Z fune, %, 3.9)

Zan <Xr]—[yr, I1 yr,>

1,1 = i=s+1

Iyl

_222

m s=0

For any s € [0 : €], we construct the matrix W whose elements are given by
m,s m,s
(Wit oy =2 Zat, Ay

Then we have that Wy > 0, Vs € [0 : £] and

VIR Py e, 2,3, 9) =D fux, %3, 5)
m
¢ i
=Y (xei®e yw”) Wy (x ® 7% ® yw‘s) :
s=0
which completes the proof. O

The above argument also works for csos polynomials with slight modifications.

Lemma 20 For any Hermitian operator Mg, and integer £ > 1, we have that
112D pys is csos if and only if there exists a positive semidefinite operator
Wa By = 0, such that

:
P par B3 $) = (2 © ¥°) Wan (x®9%) V€ Hay € Ha.
@41)

Proof If there exists Wy By = 0 such that Eq. (41) holds, we can check that
||y||2(z_1)pM(x, X,y,Y) is a csos by using the spectral decomposition of W. On the
other hand, if || y||2“~D pa(x, %, v, ¥) is a csos, by definition there exist polynomials
fn(Cx,y) such that [|y[ 2V py(x, %, 3, 5) = 3, | fm(x, ¥)I?. In the following, we
will compare the monomials on both sides of this equation and explicitly construct
Wap,, from the coefficients of > [ (o y) |2. We first note that the monomials of
Iy12€=D pas(x, %, v, ¥) are all of the form x, Xy ]_[f-z:l ¥r; ¥, which is of degree 2 and
2¢ with respect to x and y, respectively. Then the possiblé monomials of f, (x,y)
can only be of degree 1 and ¢ with respect to x and y, respectively. Furthermore, by
definition f, (x, y) are polynomials with respect to x, y alone, thus the only possible
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monomial of f,(x, y) is x; ]_[f_1 vr, and we have the general form of f,,(x, y) as

fny) =3, att, (0 [Ti_, v,) with coefficients a" - Define the matrix W
with elements

o— —~m m
Wt’,r[/e];t,r[(] T z a l’”at et
m

Then we have W > 0, and

_ _ i
I par (o 53, 5) = 3 U 0P = (x @ 9%) Wany, (x @),
m

which completes the proof. O

Finally the resultof EX7* = {M IR pay s csos} can be proved in a similar

way by using Lemma 20.
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